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A Grand Coding Challenge!  
Finding a new Largest Known Prime
The Great indoor sport of hunting for  
world record-sized prime numbers
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“Two is a most odd prime
  because
  Two is the least even prime.”

   -- Dr. Dan Jurca

“That’s a big prime!”
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Agenda - Part 1 - Mersenne Primes
• Part 1.A & 1.B - 75 minutes (09:00 - 10:15) 

• 22-1: What is a Prime Number? 

• 23-1: 423+ Years of Largest known primes 

• 25-1: Factoring vs. Primality Testing 

• 27-1: Lucas-Lehmer Test for Mersenne Numbers 

• 213-1: The Mersenne Exponential Wall 

• 217-1: Pre-screening Lucas-Lehmer Test Candidates 

• 219-1: How Fast Can You Square? 

• Part 1 Exercise and Quiz - 10 minutes (10:15 - 10:25) 

• Discuss Part 1 Questions - 5 minutes (10:25 - 10:30)
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Agenda - Break
• Break - 30 minutes (10:30 - 11:00)
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Agenda - Part 2 - Large Riesel Primes Faster
• Part 2 - 75 minutes (11:00 - 12:15) 

• 231-1: Riesel Test: Searching sideways  

• 261-1: Pre-screening Riesel test candidates 

• 289-1: Multiply+Add in Linear Time 

• 2127-1: Final Words and Some Encouragement  

• 2521-1: Resources 

• Part 2 Exercise and Quiz - 10 minutes (12:15 - 12:25) 
• Discuss Part 2 Questions - 5 minutes (12:25 - 12:30) 

• Optional Discussion / General Q&A - As needed (12:30- TBD)
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Part 1.A - Mersenne Primes
• 22-1: What is a Prime Number? 

• 23-1: 423+ Years of Largest known primes 

• 25-1: Factoring vs. Primality Testing 

• 27-1: Lucas-Lehmer Test for Mersenne Numbers
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Some Notation
• Common assumption in many number theory papers: 

- A variable is an integer unless otherwise stated 

• M(p) = 2p-1 
- p is often prime :-) 

• The symbol ≡ means “identical to” 
- Think = 

- Difference between = and ≡ is important to mathematicians 
- The difference is not important to understand how to perform the test 

• mod (short for modulus) 
- Think “divide and leave the remainder” 
- 5 mod 2 ≡ 1      14 mod 4 ≡ 2      21 mod 7 ≡ 0
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22-1: What is a Prime Number?
• A natural number (1,2,3, …) is prime if and ONLY IF: 

-  it has only 2 distinct natural number divisors 
- 1 and itself 

• The first 25 primes: 
- 2  3  5  7  11  13  17  19  23  29  31  37  41  43  47  53  59  61  67  71  73  79  83  89  97 

- There are 25 primes < 100 

• 6 is not prime because: 2 * 3 = 6 
- 1, 2, 3, and 6 are factors of 6 (i.e., 6 has 4 distinct natural number divisors)
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Why is 1 not prime?
• Almost nobody on record defined 1 as prime until Stevin in 1585  

• From the mid 18th century to the start of the 20th century 
- There were many who called 1 a prime 

• Today we commonly use definitions where 1 is not prime 

• Fundamental theorem of arithmetic in commonly use today does not assume that 1 is prime  
- Any natural number can be expressed as a unique (ignoring order) product of primes 
- 1400  =  2 * 2 * 2 * 5 * 5 * 7 

- No other product of primes = 1400 

- If 1 were prime:  
- 1400  =  2 * 2 * 2 * 5 * 5 * 7 * 1 
- 1400  =  2 * 2 * 2 * 5 * 5 * 7 * 1 * 1* … 

• Q: What is a “mathematical definition”? A: The pragmatic answer: 
- .. something that the mathematical community agrees upon 

• Q: What is a “mathematical truth”? A: The pragmatic answer: 
- .. something that the mathematical community has studied and has been demonstrated to be true
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What is the Largest Known Prime: 282589933-1
• 24 862 048 decimal digits 

- 4973 pages (100 lines, 50 digits per line) 
- https://lcn2.github.io/mersenne-english-name/m82589933/prime-c.html 
•                                                                                                   1,488,944,457,420,413, 
• 255,478,064,584,723,979,166,030,262,739,927,953,241,852,712,894,252,132,393, 

- … 436 173 lines skipped here … 
• 557,947,958,297,531,595,208,807,192,693,676,521,782,184,472,526,640,076,912, 
• 114,355,308,311,969,487,633,766,457,823,695,074,037,951,210,325,217,902,591 

• The English name for this prime is over 656 megabytes long:  
- Double sided printing, 100 lines per side, requires over 82 reams (500 sheet per ream) of paper!  
- https://lcn2.github.io/mersenne-english-name/m82589933/prime.html 
• one octomilliamilliaduocenseptenoctoginmilliatrecenoctoquadragintillion, 
• four hundred eighty eight octomilliamilliaduocenseptenoctoginmilliatrecenseptenquadragintillion, 
• nine hundred forty four octomilliamilliaduocenseptenoctoginmilliatrecensexquadragintillion, 

- … 8 280 068 lines skipped here …  
• two hundred seventeen million, 
• nine hundred two thousand, 
• five hundred ninety one
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There is No Largest Prime - 
The Largest Known Prime Record can always be Broken!
• Assume there are finitely many primes (and 1 is not a prime) 

• Let A be the product of “all primes” 

• Let p be a prime that divides A+1 

• Since p divides A 
- Because A is the product of “all primes” 

• And since p divides A+1 

• Therefore p must divide 1 
- Which is impossible 

• Which contradicts our original assumption
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What is a Mersenne Prime?
• Mersenne number: 2n-1 

- Examples: 23-1    211-1   267-1    223209-1 

• A Mersenne prime is a mersenne number that is prime 
- Examples: 23-1     223209-1 

• Why the name Mersenne? 
- Marin Mersenne: A 17th century french monk 
• Mathematician, Philosopher, Musical Theorist 

- Claimed when p = 2, 3, 5, 7, 13, 17, 19, 31, 67, 127, 257 
then 2p-1 was prime 
- 261-1 proven prime in 1883 - was Mersenne’s 67 was a typo of 61? 

- 267-1 = 761838257287 × 193707721 in 1903 - Still a typo? 

3 years of Saturdays for Cole to factor  by hand:147573952589676412927 

- 289-1 proven prime in 1911 - OK he missed one - 2nd strike 

- 2107-1 proven prime in 1914 - 3rd strike - Forget it!  

- After more than 300 years his name stuck
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23-1: 423+ Years of Largest Known Primes
• Earliest explicit study of primes: Greeks (around 300 BCE) 

• 1588: First published largest known primes 
- Cataldi proved 131701 (217-1) & 

524287 (219-1) were prime 
- Produced an complete table of primes up to 743 

- Made an exhaustive factor search of  217-1 & 219-1 

By hand, using roman numerals! 
- Held the record for more than 2 centuries! 

• 1772: Euler proved 231-1 (2147483647) was prime 
- A clever proof to eliminate almost all potential factors, trial division for the rest 
- Euler said: “231-1 is probably the greatest (prime) that ever will be discovered … 

                    it is not likely that any person will attempt to find one beyond it.” 

• 1867: Landry completely factored 259-1 = 179951 * 3203431780337 
- 3203431780337 was the largest known prime by the fundamental theorem of arithmetic 

- By trial division after eliminating almost all potential factors
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25-1: Factoring vs. Primality testing
• Factoring and Prime testing methods overlap only in the trivial case: 

• Useful to test numbers with only a “handful of digits” 

• 1951:  Ferrier factored 2148+1 and proved that (2148+1)/17 was prime 
- Using a desk calculator after eliminating most factor candidates 
- Largest record prime, 44 digits, discovered without the use of a digital computer 

• Largest “general” number factored in 2012 had only 320 digits 
- Primes larger than 320 digits were discovered in 1952
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1st Prime Records without Factoring, by Hand
• 1876: Édouard Lucas proved 2127-1 was prime 

- 170141183460469231731687303715884105727 
- Édouard Lucas made significant contributions to our 

understanding of Fibonacci-like Lucas sequences 
- Lucas sequences are the heart of the Lucas-Lehmer test for 

Mersenne Primes 

• Lucas proved that 2127-1 had a property that 
only possible when 2P-1 was prime 
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Pseudo-primality Tests
• Some mathematical tests are true when a number is prime 

• A pseudo primality test  
- A property that every prime number must pass … 

however some non-primes also pass 

• Fermat pseudoprime test 
- If p is an odd prime, and a does not divide p, then a(p-1)-1 is divisible by p 

- Let: p = 23 and a = 2 which is not a factor of 23, then 222-1 =  4194303 and 23 * 182361 = 4194303 

- However 341 also passes the test 
- for a = 2: 2340-1 is divisible by 341 but 341 = 11 * 31 

• Passing a Pseudoprime test does NOT PROVE that a number is prime! 
- Failing a Pseudoprime test only proves that a number is not prime 

• There are an infinite number of Fermat pseudoprimes 
- There are an infinite number of Fermat pseudoprimes that pass for every allowed value of “a” 

- These are called Carmichael numbers
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Lucas Sequences
• For a given P & Q 

- U0 = 0      U1 = 1       Un = P*Un-1  -  Q*Un-2      for n > 1 

- V0 = 2      V1 = P       Vn = P*Vn-1  -  Q*Vn-2      for n > 1 

• Fibonacci Sequence - Lucas Sequence special case 
- P = 1      Q = -1      Un = P*Un-1  -  Q*Un-2 
- U0 = 1     U1 = 1       Un = Un-1 + Un-2 
- 0,  1,  1,  2,  3,  5,  8,  13,  21,  34,  55,  89,  144,   … 

• Lucas Numbers - Useful for primality testing 
- P = 1      Q = -1      Vn = P*Vn-1  -  Q*Vn-2 
- V0 = 2     V1 = 1       Vn = Vn-1 + Vn-2 
- 2,  1,  3,  4,  7,  11,  18,  29,  47,  76,  123,  199,   …
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Lucas Pseudo-primes
• If n is prime, then Vn mod n = 1 

- 2,  1,  3,  4,  7,  11,  18,  29,  47,  76,  123,  199,   … 

• However, Vn mod n = 1 for some n that are not prime: 

• V705   %     705 = 1 
• V2465  %  2465 = 1 
• V2737  %  2737 = 1 
• V3745  %  3745 = 1 
• V4181  %  4181 = 1 
• V5777  %  5777 = 1 
• V6721  %  6721 = 1
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Jumping ahead in the Lucas Sequence
• Vn   = Vn-1 + Vn-2 

• V2n = Vn 2  -  2 

• V2n grows to be huge!
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27-1: Lucas-Lehmer Test for Mersenne Numbers
• Some primality tests are definitive 

• In 1930, Dr. D. H. Lehmer extended Lucas’s work 
- This test was the subject of Dr. Lehmer’s Thesis 

• Known as a Lucas-Lehmer test 
- A definitive primality test 

• The most efficient proof of primality known 
- Work to prove primality vs. size of the number tested 

- Theoretical argument suggests test may be the most efficient possible 

• It was my honor and pleasure to study under Dr. Lehmer 
- One of the greatest computational mathematicians of our time 

- Like prime numbers, there will always be greater mathematicians :) 

- Was willing to teach math to a couple of high school kids like me
19
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Lucas Sequence for 2n-1
• S2 = 4 

• Sn+1 = Sn 2  -  2 

• If p is odd prime, 

then for m = 2p-1, 
if and only if Sm  mod m = 0, 
then m is prime! 

• You don’t need the 
exact value of Sm  
only Sm mod m 
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Lucas-Lehmer test *
• M(p) = 2p-1 is prime IF AND ONLY IF p is odd prime and Up ≡ 0 mod (2p-1) 

- Where U2 = 4 

- and Ux+1 ≡ (Ux2 - 2) mod (2p-1)
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* This is Landon Noll’s preferred version of the test: 

   others let U1=4 and test for U(p-1) ≡ 0 mod 2p-1, 
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Lucas-Lehmer Test - Mersenne Prime Test
• Mersenne prime test for M(p) = 2p-1 where p is an odd prime 

• Let U2 = 4 

• Repeat until Up is calculated: Ui+1 ≡ (Ux2 - 2) mod (2p-1) 
- Square the previous Ui term 
- Subtract 2 

- mod (2p-1)           (divide by 2p-1 and take the remainder) 

• Does the final Up ≡ 0 ??? 
- Yes - M(p) = 2p-1 is prime 

- No -  M(p) = 2p-1 is not prime

22

Minor Planet 8191 
is named after Mersenne 

8191 = 213-1 

http://creativecommons.org/licenses/by-sa/3.0/us/


© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

Lucas-Lehmer Test Example.0

• Is M(5) = 25-1 = 31 prime? 

• 5 is odd prime so according to the Lucas-Lehmer test: 
- 25-1 prime if and only if U5 ≡ 0 mod 31 

- where U2 = 4  and Ux+1 ≡ Ux2 - 2 mod 31 

• U2 =   4     (by definition)
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Lucas-Lehmer Test Example.1

• Is M(5) = 25-1 = 31 prime? 

• 5 is prime so according to the Lucas-Lehmer test: 
- 25-1 prime if and only if U5 ≡ 0 mod 31 

- where U2 = 4  and Ux+1 ≡ Ux2 - 2 mod 31 

• U2 =   4     (by definition) 

• U3 =   42 - 2 =  

24
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Lucas-Lehmer Test Example.2

• Is M(5) = 25-1 = 31 prime? 

• 5 is prime so according to the Lucas-Lehmer test: 
- 25-1 prime if and only if U5 ≡ 0 mod 31 

- where U2 = 4  and Ux+1 ≡ Ux2 - 2 mod 31 

• U2 =   4     (by definition) 

• U3 =   42 - 2 =   14 mod 31 ≡
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Lucas-Lehmer Test Example.3

• Is M(5) = 25-1 = 31 prime? 

• 5 is prime so according to the Lucas-Lehmer test: 
- 25-1 prime if and only if U5 ≡ 0 mod 31 

- where U2 = 4  and Ux+1 ≡ Ux2 - 2 mod 31 

• U2 =   4     (by definition) 

• U3 =   42 - 2 =   14 mod 31 ≡ 14 

• U4 = 142 - 2 =
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Lucas-Lehmer Test Example.4

• Is M(5) = 25-1 = 31 prime? 

• 5 is prime so according to the Lucas-Lehmer test: 
- 25-1 prime if and only if U5 ≡ 0 mod 31 

- where U2 = 4  and Ux+1 ≡ Ux2 - 2 mod 31 

• U2 =   4     (by definition) 

• U3 =   42 - 2 =   14 mod 31 ≡ 14 

• U4 = 142 - 2 = 194 mod 31 ≡
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Lucas-Lehmer Test Example.5

• Is M(5) = 25-1 = 31 prime? 

• 5 is prime so according to the Lucas-Lehmer test: 
- 25-1 prime if and only if U5 ≡ 0 mod 31 

- where U2 = 4  and Ux+1 ≡ Ux2 - 2 mod 31 

• U2 =   4     (by definition) 

• U3 =   42 - 2 =   14 mod 31 ≡ 14 

• U4 = 142 - 2 = 194 mod 31 ≡   8 

• U5 =   82 - 2 =
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Lucas-Lehmer Test Example.6

• Is M(5) = 25-1 = 31 prime? 

• 5 is prime so according to the Lucas-Lehmer test: 
- 25-1 prime if and only if U5 ≡ 0 mod 31 

- where U2 = 4  and Ux+1 ≡ Ux2 - 2 mod 31 

• U2 =   4     (by definition) 

• U3 =   42 - 2 =   14 mod 31 ≡ 14 

• U4 = 142 - 2 = 194 mod 31 ≡   8 

• U5 =   82 - 2 =   62 mod 31 ≡
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Lucas-Lehmer Test Example.7

• Is M(5) = 25-1 = 31 prime? 

• 5 is prime so according to the Lucas-Lehmer test: 
- 25-1 prime if and only if U5 ≡ 0 mod 31 

- where U2 = 4  and Ux+1 ≡ Ux2 - 2 mod 31 

• U2 =   4     (by definition) 

• U3 =   42 - 2 =   14 mod 31 ≡ 14 

• U4 = 142 - 2 = 194 mod 31 ≡   8 

• U5 =   82 - 2 =   62 mod 31 ≡   0 

• Because U5 ≡ 0 mod 31 we know that 31 is prime
30
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Lucas-Lehmer Test Example II
• Is M(11) = 211-1 = 2047 prime? 

• 11 is prime so according to the Lucas-Lehmer test: 
- 211-1 prime if and only if U11 ≡ 0 mod 211-1 

• Calculating U11 
- U2   =        4     (by definition) 

- U3   =       42 - 2 =           14 mod 2047 ≡      14 

- U4   =     142 - 2 =         194 mod 2047 ≡    194 

- U5   =   1942 - 2 =    37634 mod 2047 ≡     788 

- U6   =   7882 - 2 =   620942 mod 2047 ≡    701 

- U7   =   7012 - 2 =   491399 mod 2047 ≡    119 

- U8   =   1192 - 2 =     14159 mod 2047 ≡  1877 

- U9   = 18772 - 2 = 3523127 mod 2047 ≡    240 

- U10 =   2402 - 2 =     57598 mod 2047 ≡    282 

- U11 =   2822 - 2 =     79522 mod 2047 ≡  1736    <<== not 0 therefore 2047 is not prime (23 * 89 = 2047)
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Primality Testing in the Age of Digital Computers
• 1951: Miller and Wheeler proved 180*(2127-1)2 + 1 prime using EDSAC1 

- 5210644015679228794060694325390955853335898483908056458352183851018372555735221 

- A 79 digit prime 
- Using a specialized proof of primality 

• 1952: Robison and Lehmer using the SWAC using the Lucas-Lehmer test 
- 1952 Jan 30      2521-1 is prime 

- 1952 Jan 30      2607-1 is prime 

- 1952 June 25    21279-1 is prime 

- 1952 Oct 7        22203-1 is prime 

- 1952 Oct 9        22281-1 is prime 

• Robison coded the SWAC over the 1951 Christmas holiday 
- By hand writing down the machine code as digits using only the SWAC manual 
- Was Robison’s first computer program he ever wrote 
- Ran successfully the very first time!
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Mersenne Prime Exponents must be Prime
• If M(p) = 2p-1 is prime, then p must be prime 

• If x is not prime, then M(x) = 2x-1 is not prime 

• Look at M(9) 29-1 in binary 
- 111111111 

• We can rewrite M(9) as this product: 
-   1001001 

x         111 
-------------- 
111111111 

• If x = y * z 
- then M(x) has M(y) and M(z) as factors   AND   therefore M(x) cannot be prime
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Record Primes 1957 - 1961
• 1957: M(3217)      969 digits    Riesel using BESK 
• 1961: M(4423)    1332 digits    Hurwitz & Selfridge using IBM 7090 

- The M(4423) was proven the prime same evening M(4253) was proven prime 
- Hurwitz noticed M(4423) before M(4253) because the way the output was stacked 
- Selfridge asked: 

- “Does a machine result need to be observed by a human before it can be said to be discovered?” 

- Hurwitz responded: 
- “… what if the computer operator who piled up the output looked?” 

- Landon believes the answer to Selfridge’s question is yes 
- Landon speculates that even if the computer operator looked, 

they very likely did not understand the meaning of the output: 
- Therefore Landon (and many others) believe M(4253) was 

never the largest known prime
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Record Primes at UIUC: 1963
• 1963: M(9668)      2917 digits    Donald B. Gillies using the ILLIAC 2 
• 1963: M(9941)      2993 digits    Donald B. Gillies using the ILLIAC 2 
• 1963: M(11213)    3376 digits    Donald B. Gillies using the ILLIAC 2 

• Largest known prime until: 
• 1971: M(19937)    6002 digits    Tuckerman using the IBM 360/91
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Landon’s Record Primes: 1978 - 1979
• 1978: M(21701)    6533 digits    Noll & Nickel using the CDC Cyber 174 
• 1979: M(23209)    6987 digits    Noll  using the CDC Cyber 174 

• 1st working version of the code took 500+ hours to test M(21001) on 1 April 1977 
• The 1 Oct 1978 version took 7 hours, 40 minutes and 20 seconds to test M(21701) 

- Proven prime on 1978 Oct 30 

• Searched M(21001) thru M(24499) using 6000+ CPU Hours on Cyber 174 
- Used the facility account and much encouragement from Dr. Dan Jurca
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Cray Record Primes
• 1979: M(44497)    13 395 digits    Nelson & Slowinski using the Cray 1 
• 1982: M(86243)    25 962 digits    Slowinski using the Cray 1 
• 1983: M(132049)  39 751 digits    Slowinski using the Cray X-MP 
• 1985: M(216091)  65 050 digits    Slowinski using the Cray X-MP/24
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Part 1.B - Mersenne Prime Search
• 213-1: The Mersenne Exponential Wall 

• 217-1: Pre-screening Lucas-Lehmer Test Candidates 

• 219-1: How Fast Can You Square?
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213-1: The Mersenne Exponential Wall
• The Lucas-Lehmer Test for M(p) requires computing p-1 terms of Ui : 

- Ui+1 ≡ Ui2 - 2 mod 2p-1 

• That is p-1 times performing ... 
- Sub-step 1: square a number 

- Sub-step 2: subtract 2 

- Sub-step 3: mod 2p-1 

•… on numbers between 0 and 2p-2 
- On average numbers that are p bits long 

- or 2p bits when dealing with the result of the square
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Sub-step 1: Square
• Consider this classical multiply: 

• On the average a d x d digit multiply requires O(d2) operations: 
- Products: d2 

- Adds: d2 
40

                 1    2    3  
   x            4    5    6 
                 6  12  18 
           5  10  15 
+   4    8  12           . 
     4  13  28  27  18 
carry  1    2    2    1 

     5    5   10   8    8 
carry        1 
     5    6    0    8    8

3 x 3 digit multiply

9 products

5 adds

5 carry adds
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Sub-step 2: subtract 2
• This step is trivial 

• On average requires 1 subtraction 
- O(1) steps
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Sub-step 3: mod 2p-1 by Shift and Add
• It turns out that this is easy too! 

- Just a shift and add! 

• Split Ui2-2 into two chunks and make low order chunk p bits long: 

• Then Ui2-2 mod 2p-1 ≡ J + K 

• If J + K > 2p-1 then split again 
- In this case the upper chunk will be 1, so just add 1 to the lower chunk 

• So mod 2p-1 can be done in O(d) steps
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Sub-step 3: mod 2p-1 - An Example
• Split L into two chunks and make low order chunk p bits long: 

• For p=31, U22 = 1992425718 

• U222-2 = 3969760241747815522 =  
-11011100010111011010111110100000111100110110001110110001100010 

• J      =   1101110001011101101011111010000 
K     =   0111100110110001110110001100010 
J+K = 10101011000001111100010000110010 

• Now J + K > 231-1 so peel off the upper 1 bit and add it into the bottom 

•             0101011000001111100010000110010 
                                     1 
            0101011000001111100010000110011 = 721929267 

• U23 = U222-2 mod 231-1 = 721929267 
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So Computing U(x)
• Sub-step 1: square requires O(p2) operations 

• Sub-step 2: subtract requires O(1) operation 

• Sub-step 3: mod 2p-1 requires O(p) operations 

• The time to square dominates over the time subtract and mod 

• Computing Ui requires O(p2) operations 

• We have to compute p-1 terms of Ui to test 2p-1 

• The prime test is O(p3) operations
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O(p3) doesn’t Scale Nicely as P Grows
• If it takes a computer 1 day to test M(p) 

• 8 days to test M(2*p) 

• 4 months to test M(5*p) 

• 2.7 years to test M(10*p) 

• etc. !!!
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217-1: Pre-screening Lucas-Lehmer Test Candidates
• Performing the Lucas-Lehmer test on M(p) is time consuming 

- Even if it is very a very efficient definitive test given the size of the number testing 

• Try to pre-screen potential candidates by looking for tiny factors 
- If you find a small factor of M(p) then there is no need to test 

• It can be proven that a factor q of M(p) must be of this form: 
- q ≡ 1 mod 8   or   q ≡ 7 mod 8 
- q = 2*k*p+1    for some integer k > 1 

• Factor candidates of M(p) are either 4*p or 2*p apart 
- When p is large, you can skip over a lot of potential factors of M(p)
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Pre-screen Factoring Rule of Thumb
• For a given set of Mersenne candidates: M(a), M(b), … M(z) 

- Where z is not much bigger than a  (say a < z < a*1.1) 
- Start factoring candidates until the rate of finding factors is slower than the Lucas-

Lehmer test for the M(z) 

• Typically this rule of thumb will eliminate 50% of the candidates
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219-1: How Fast Can You Square?
• The time to square dominates the subtract and mod 

- So Mersenne Prime testing comes down to how fast can you square
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Classical Square Slightly Faster Than Multiply
• Because the digits are the same on both, we can cut multiplies in half: 

• On the average a d x d digit square requires O(d2) operations: 
- Products: d2/2 

- Shifts: d2/2      (shifts are faster than products) 

- Adds: d2
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                   3    4    5    6  
   x              3    4    5    6 
                 18  24  30  36 
           15  20  25  30 
     12  16  20  24 
9   12  15  18        

4 x 4 digit multiply

10 products 
6 of which 

 are doubled 
by shifting
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Reduce Digits by Increasing Base
• No need to multiply base 10 

• If a computer can ... 
- Multiply two B bit words produce a 2*B product 
- Divide 2*B bit double word by B bit divisor and produce B bit dividend & remainder 
- Add or Subtract B bit words and produce a B bit sum or difference 

•… then represent your digits in base 2B 

- Each B bit word will be a digit in base 2B 

• Test M(p) requires p bit squares or p/B word squares 

• Classical square requires O((p/B)2) operations 
- The work still grows by the square of the digits O(d2)
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Squaring by Transforms
• Convolution Theorem states: 

- The Transform of the ordinary product equals dot product of the Transforms 
- T(x*y) = T(x)・T(y) 

- T(foo) is the transform of foo 

• While ordinary product is O(p2) the dot product is O(p) !!! 
- Dot product: a[0]*b[0]  +   a[1]*b[1]   +   a[2]*b[2]   +  …. +   a[max]*b[max] 

• Multiplication by transform: 
- x*y = TINV( T(x)・T(y) ) 
• TINV(foo) is the inverse transform of foo 

• A Square by Transform can approach O(d ln d) 
- ln d is natural log of d 
- Scales much much better than O(d2) 
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Squaring by Transform II
• Fast Fourier Transform (FFT) 

- An example of a Transform where the Convolution Theorem holds 
- There are more efficient Transforms for digital computers 

• To compute A = X2 
- Step 1: Transform X:  Y = T(X) 

- Step 2: Compute dot product:  Z = Y・Y 

- Step 3: Inverse transform A = TINV(Z) 

• The prime test is O(p2 ln p) operations with Transform Squaring 
- ln p is natural log of p 
- If it takes a computer 1 day to test M(p) 
- 2.7 days to test M(2*p)                 (instead of 8 days) 
- 40 days to test M(5*p)                  (instead of 4 months) 
- 7.6 months to test M(10*p)          (instead of 2.7 years)
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Transform of an Integer?
• Treat the integer as a wave: 

- with bit value amplitude 
- with time starting from low order bit to high order bit 
- 0 1 1 0 0 1 0 1 

• Assume that wave form is infinitely repeating: 
- 0 1 1 0 0 1 0 1 0 1 1 0 0 1 0 1 0 1 1 0 0 1 0 1 0 1 1 0 0 1 0 1 0 1 1 0 0 1 0 1  … 

                                                                                                                      … 

• Convert that wave from time domain into frequency domain: 
- Take the spectrum of the infinitely repeating waveform:
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Digital Transforms are Approximations
• The effort to perform a perfect transform requires: 

- Computing infinite sums with infinite precision 
- Infinite operations are “Well beyond” the ability for finite computers to perform   :-) 

• Inverse Transform converts frequency domain ... 

• ... back to time domain: 
- 0.17    0.97   1.04    -0.21   -0.06    0.95    -0.18    0.89 
- Because of “rounding” approximation errors the result is not pure binary 
- So we round to the nearest integer: 
- 0          1          1         0         0         1         0         1 

• These examples assumed a 8-point 1D transform
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Pad with Zeros to Hold the Final Product 
• We need 2n bits to hold the product of two n-bit values 

- The Transform needs twice the points to hold the product 

• We add n leading 0’s to our values before we multiply: 
- 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1

55

http://creativecommons.org/licenses/by-sa/3.0/us/


© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

General Square Transform Algorithm
• To square p-bit value: 

- Pad the value with p leading 0 bits 
- Forms a 2*p-bit value: upper half 0’s and lower half the value we wish to square] 

- The transform may require a certain number of points 
- Such as a power of two number of points 
- If needed, pad additional 0’s until the required number of points is achieved 

- Perform the Transform on the padded value 

- Convolve the signal in the transform space 
- Dot product: Just 1 square for each transform point (not an n2 operation) 

- Perform the Inverse Transform 

- Divide the real part of each digit by the number of points and round to the nearest integer 

- Propagate carries
56

http://creativecommons.org/licenses/by-sa/3.0/us/


© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

FFT Square Example Output
• input:   0   0   3   2 

• freq: (-1.251,3.001i) (0.248,0.003i) (-1.250,-3.005i) (6.257,0.007i) 
- After transform - FFT errors exaggerated for dramatic effect 

• fft output: (0.091,-0.041i) (35.896,0.055i) (47.916,-0.127i) (16.183,0.127i) 
- after square and inverse transform - FFT errors exaggerated for dramatic effect 

• round to integers: (0,0i)   (36,0i)   (48,0i)   (16,0i) 

• extract reals:   0   36   48   16 

• scale output:   0     9   12     4 
- Divide each cell by the initial number of cells 

• After carries propagated:   1  0  2  4
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FFT Square Example Makefile
• Try the FFTW library: 

- http://www.fftw.org/ 

• Makefile:
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# FFT square example using fftw 
# 
# See: http://www.fftw.org 
# 
# chongo (Landon Curt Noll) /\oo/\  -- Share and Enjoy!  :-) 

fftsq: fftsq.c 
 cc fftsq.c -lfftw3 -lm -Wall -o fftsq 
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FFT Square Example C Source.0

59

/* 
 * FFT square example using fftw 
 * See: http://www.fftw.org 
 * chongo (Landon Curt Noll) /\oo/\  -- Share and Enjoy!  :-) 
 */ 

#define N 4     /* points in FFT */ 

/* digit arrays - least significant digit first */ 
long input[N] = { 2, 3, 0, 0 }; /* input integer, upper half 0 padded */ 
long output[N];                 /* squared input */ 

#include <stdlib.h> 
#include <math.h> 
#include <fftw3.h> 
#include <complex.h> 

int 
main(int argc, char *argv[]) 
{ 
    complex *in;                /* input as complex values */ 
    complex *freq;              /* transformed integer as complex values */ 
    complex *sq;                /* squared input */ 
    fftw_plan trans;            /* FFT plan for forward transform */ 
    fftw_plan invtrans;         /* FFT plan for inverse transform */ 
    int i; 

    /* allocate for fftw */ 
    in = (complex *) fftw_malloc(sizeof(fftw_complex) * N); 
    freq = (complex *) fftw_malloc(sizeof(fftw_complex) * N); 
    sq = (complex *) fftw_malloc(sizeof(fftw_complex) * N); 
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FFT Square Example C Source.1
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    /*  
     * load long integers into FFT input array  
     */ 
    for (i=0; i < N; ++i) { 
        in[i] = (complex)input[i];  /* long integer to complex conversion */ 
    } 

    /* debugging */ 
    printf("input:  "); 
    for (i=N-1; i >= 0; --i) { 
        printf(" %ld  ", input[i]); 
    } 
    putchar('\n'); 

    /* 
     * forward transform 
     */ 
    trans = fftw_plan_dft_1d(N, (fftw_complex*)in, (fftw_complex*)freq, 

                   FFTW_FORWARD, FFTW_ESTIMATE); 
    fftw_execute(trans);    
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FFT Square Example C Source.2
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    /* 
     * square the elements  
     */ 
    for (i=0; i < N; ++i) { 
        freq[i] = freq[i] * freq[i];    /* square the complex value */ 
    } 

    /* debugging */ 
    printf("freq: "); 
    for (i=N-1; i >= 0; --i) { 
        printf("(%f,%fi) ", creal(freq[i])/N, cimag(freq[i])/N); 
    } 
    putchar('\n'); 

    /* 
     * inverse transform  
     */ 
    invtrans = fftw_plan_dft_1d(N, (fftw_complex*)freq, (fftw_complex*)sq, 
                                FFTW_BACKWARD, FFTW_ESTIMATE); 
    fftw_execute(invtrans); 

    /*  
     * convert complex to rounded long integer 
     */ 
    for (i=0; i < N; ++i) { 
        output[i] = (long)(creal(sq[i]) / (double)N); /* complex to scaled long integer */ 
    }

http://creativecommons.org/licenses/by-sa/3.0/us/


© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

FFT Square Example C Source.3
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    /* 
     * output the result  
     */ 
    printf("fft output: "); 
    for (i=N-1; i >= 0; --i) { 
        printf("(%f,%fi) ", creal(sq[i]), cimag(sq[i])); 
    } 
    putchar('\n'); 
    /* NOTE: Carries are not propagated in this code */ 
    printf("scaled output: "); 
    for (i=N-1; i >= 0; --i) { 
        printf(" %ld  ", output[i]); 
    } 
    putchar('\n'); 

    /*  
     * cleanup 
     */ 
    fftw_destroy_plan(trans); 
    fftw_destroy_plan(invtrans); 
    fftw_free(in); 
    fftw_free(freq); 
    fftw_free(sq); 
    exit(0); 
}
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FFT Square Example C Source - Just the Facts

63

/* load long integers into FFT input array */ 
for (i=0; i < N; ++i) { 
    in[i] = (complex)input[i];      /* long integer to complex conversion */ 
} 

/* forward transform */ 
trans = fftw_plan_dft_1d(N, in, freq, FFTW_FORWARD, FFTW_ESTIMATE); 
fftw_execute(trans); 

/* square the elements */ 
for (i=0; i < N; ++i) { 
    freq[i] = freq[i] * freq[i];    /* square the complex value */ 
} 

/* inverse transform */ 
invtrans = fftw_plan_dft_1d(N, freq, sq, FFTW_BACKWARD, FFTW_ESTIMATE); 
fftw_execute(invtrans); 

/* convert complex to rounded long integer */ 
for (i=0; i < N; ++i) { 
    output[i] = (long)(creal(sq[i]) / (double)N) /* complex to scaled long integer */ 
} 
/* NOTE: TODO: propagate carries */
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The Details are in the Rounding!
• Just like in classical multiplication / squaring 

- Using a larger base helps 
- We do not need to put 1 digit per cell like in the previous “examples” 

• What base can we use? 
- Too small of a base: Slows down the test! 
- Too large of a base: The final rounding rounds to the wrong value 

•  Expect to use a base of “about 1/4” of the CPU’s numeric precision 
- The Amdahl 1200 had a floating point 96 bit mantissa: 18900 point transform used a base of 223 

• Analyze the digital rounding errors 
- Estimate the maximum precision you can use 
- Test your estimate 
- Test worst case energy spike patterns 
- Add check code to your multiply / square routine to catch any other mistakes 

- Verify that Ux2 mod 264-3  =  (Ux mod 264-3)2 mod 264-3 

- Verify that complex part of point output rounds to 0
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Try non-Fourier Transforms
• Some of the integer transforms perform well on some CPUs 

- Especially where integer CPU ops are fast vs. floating point 

•  PFA Fast Fourier Transform and on Winograd's radix FFTs 
- Used by Amdahl 6 to find a largest known prime 

• Dr. Crandall’s transform 
- See https://www.ams.org/journals/mcom/1994-62-205/S0025-5718-1994-1185244-1/

S0025-5718-1994-1185244-1.pdf 
- GIMPS used Dr. Crandall’s transform to find many largest known primes 
- See also https://www.daemonology.net/papers/fft.pdf 

• Schönhage–Strassen Transform  
- Used by the GNU Multiple Precision Arithmetic Library 
- Used by FLINT 

• Roll your own efficient Transform 
- Ask a friendly computational mathematician for advice
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Even Better: Number Theoretic Transforms
• Avoids complex arithmetic  

- Uses powers of integers modulo some prime instead of complex numbers 

• Examples: 
- Schönhage–Strassen algorithm 

- https://tonjanee.home.xs4all.nl/SSAdescription.pdf 
- GNU Multiple Precision Arithmetic Library, See: https://gmplib.org 
- FLINT: Fast Library for Number Theory: http://www.flintlib.org 

- Crandall’s Transform 
- https://www.ams.org/journals/mcom/1994-62-205/S0025-5718-1994-1185244-1/S0025-5718-1994-1185244-1.pdf 
- https://www.daemonology.net/papers/fft.pdf 

- Fürer's algorithm 
- Anindya De, Chandan Saha, Piyush Kurur and Ramprasad Saptharishi gave a similar algorithm that relies on 

modular arithmetic 
- Symposium on Theory of Computation (STOC) 2008, see https://arxiv.org/abs/0801.1416 

• A good primer on Number Theoretic Transform Multiplication: 
- https://tonjanee.home.xs4all.nl/SSAdescription.pdf
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Number Theoretic Transform Multiply Example
• Number-theoretic transforms in the integers modulo 337 are used, 

selecting 85 as an 8th root of unity 

• Base 10 is used in place of base 2w for illustrative purposes
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Mersenne Test Revisited
• Start with a table of M(p) candidates (where p is prime) 

• Look for small factors, tossing out those with factors that are not prime 
- Until the rate of tossing out candidates is slower than Lucas-Lehmer test rate 

• For each M(p) remaining, perform the Lucas-Lehmer test 
- U2 = 4  and Ui+1 ≡ Ui2 - 2 mod M(p) until Up is computed 

- Pad Ux with leading 0’s (at least p bits, more if required by Transform size) 
- Transform 
- Square each point 
- Inverse Transform 
- Divide real parts of points by point count and round to integers 
- Propagate carries 
- Subtract 2 
- Mod M(p) using “shift and add” method 

- If Up ≡ 0 then M(p) is prime, otherwise it is not prime
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EFF Cooperative Computing Awards
•   $50 000 - prime number with at least       1 000 000 decimal digits 

- Awarded 2000 April 2 

• $100 000 - prime number with at least      10 000 000 decimal digits 
- Awarded 2009 October 22 

• $150 000 - prime number with at least    100 000 000 decimal digits 
- Unclaimed as of 2022 Apr 25 

• $250 000 - prime number with at least 1 000 000 000 decimal digits 
- Unclaimed as of 2022 Apr 25 

- BTW: Landon is on the EFF Cooperative Computing  Award Advisory Board 
- And therefore Landon is NOT eligible for an award 
- Because Landon is an advisor, he will NOT give private advice to individuals seeking large primes 
- Landon does give public classes / lectures where the content + Q&A are open to anyone attending
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EFF Cooperative Computing Awards II
• Funds donated by an anonymous donor to EFF 

• Official Rules: 
- https://www.eff.org/awards/coop/rules 
• See also: https://www.eff.org/awards/coop/faq 

- Rules designed by Landon Curt Noll 
- See https://www.eff.org/awards/coop/primeclaim-43112609 for a valid claim 

  

• Rule 4F: You must publish your proof in a refereed academic journal! 
- Your claim must include a citation and abstract of a published paper that announces 

the discovery and outlines the proof of primality. The cited paper must be published 
in a refereed academic journal with a peer review process that is approved by EFF. 

• EFF Cooperative Computing  Award Advisory Board 
- Landon Curt Noll (Chair), Simon Cooper, Chris K. Caldwell 
- Advisory Board members are not eligible to win an award
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www.isthe.com/chongo/tech/math/prime/prime-tutorial.pdf 
Questions for Part 1
• 1) Was M(4253) ever the largest known prime?  

- Hint: See slide 30 

• 2) How do we know that 21000000000-1 is not prime? 
- Hint: See slide 29  

• 3) Should one try to factor M(p) before running the Lucas-Lehmer test? 
- Hint: think about when p is a large prime   AND   see slide 41 

• 4) If a Lucas-Lehmer test of M(p) using Classical Squaring takes 1 hour, 
    how long would it take to test M(x) where x is about 100*p? 

- Hint: See slides 40 & 41 

• 5) If it took GIMPS 12 days to prove M(82589933) is prime, how long should it take 
    them to test a Mersenne prime just large enough to claim the $150000 award? 

- Hint: M(332192831) has 100 000 007 digits 
- Hint: See slides 49, 65, 66  [[NOTE: M(332192831) is likely not prime]]  [[NOTE: They used Transforms to Square]] 

• 6) Prove that M(7) = 27-1 = 127 is prime using the Lucas-Lehmer test 
- Hint: See slides 18, 19, 27, 28
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Part 2 - Large Riesel Primes Faster
• 231-1: Riesel Test: Searching sideways  

• 261-1: Pre-screening Riesel test candidates 

• 289-1: Multiply+Add in Linear Time 

• 2127-1: Final Words and Some Encouragement  

• 2521-1: Resources
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231-1: Riesel Test: Searching sideways
• While the Lucas-Lehmer test is the most efficient proof of primality known ... 
•… It is not the most efficient method to find a new largest known prime! 

• Why?  Well … 

• Mersenne Primes are rare 
- Only 47 out of 43112609 Mersenne Numbers are prime 

- And even these odds are skewed (too good to be true), because of the pile of small Mersenne Primes 
- Only 7 of the 29260728 Mersenne numbers that are between 1 million to 10 million decimal digits in size, are prime 

- As p grows, Mersenne Prime M(p) get even more rare 

• As p gets larger, the Lucas-Lehmer test with the best multiply worse than: 
- O(p2 ln p) 
- Worse still, numbers may grow large with respect to memory cache 

- Busting the cache slows down the code 

- The length of time to test will likely exceed the MTBF and MTBE 
- Mean Time Before Failure   and   Mean Time Before Error 

- You must verify (recheck your test) and have someone else independently verify (3rd test) 
- So plan on the time to test the number at least 3 times! 

- The GIMPS test for the 2018 largest known prime took 12 days
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Advantages of Searching for h*2n-1 Primes
• Riesel test for h*2n-1 is almost as efficient as Lucas-Lehmer test for 2p-1 

- Riesel test is about 10% slower than Lucas-Lehmer 
- When h is small enough ... but not too small 

- Test is very similar to Lucas-Lehmer so many of the performance tricks apply 

• Testing h*2n-1 grows as n grows - Avoid the exponential wall (go sideways) 
- Solution: pick a fixed value n and change only the value of h 

- Use odd values of h < 2n (if h in even, divide by 2 and increase n until h is odd) 

- A practical bound for h is: 2*n < h < 16*n 

- Better still keep 2*n < h < single precision unsigned integer (on a 64-bit machine, this might be 232 or  264) 

- N may be selected to optimize the algorithm used to square large integers 

• Pre-screening can eliminate >98.5% of candidates 

• When 2*n < h < 2n primes of the form h*2n-1 are not rare like Mersenne Primes 
- They tend appear about as often as your average prime that is about the same size 

- Odds that h*2n-1 is prime when 2*n < h < 2n is about 1 in 2*ln(h*2n-1) 
- You can “guesstimate” the amount of time it will take to find a large prime
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Mersenne Primes Dethroned
• 1989: 391581 * 2216193-1   65087 digits    Amdahl 6 using the Amdahl 1200 

- Only 37 digits larger than M(216091) that was found in 1985 
- “Just a fart larger ” - Dr. Shanks 

- BTW: The number we tested was really 783162 * 2216192-1 

• Amdahl 6 team: 
- Landon Curt Noll, Gene Smith, Sergio Zarantonello, 

John Brown, Bodo Parady, Joel Smith  

• Did not use the Lucas-Lehmer Test 

• Squared numbers using Transforms 
- First use for testing non-Mersenne primes 
- First efficient use for small 1000 digit tests
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Riesel Test for h*2n-1 is Lucas-Lehmer like
• h*2n-1 is prime if and only if odd h < 2n, 

h*2n-1 not divisible by 3, and 
Un ≡ 0 mod h*2n-1 

- If h in even, divide by 2 and increase n until h is odd 
- U2 = V(h) 

- We will talk about how to calculate V(h) in the slides that follow 

- Ux+1 ≡ Ux2 - 2 mod h*2n-1 

• Differences from the Lucas-Lehmer test 
- Need to verify h*2n-1 is not a multiple of 3 
- The power of 2 does not have to be prime 

- We calculate mod h*2n-1 not mod 2n-1 

- U2 depends on V(h) and is not always 4
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Example code for Riesel Test
• Example code for Riesel Test: 

- http://www.isthe.com/chongo/src/calc/lucas-calc 
- Source code contains lots and lots of comments with lots of references to papers - worth reading! 
- NOTE: Only use this code as a guide, calc by itself is not intended to find a new largest known prime 
- Written in Calc - A C-like multi-precision calculator: http://www.isthe.com/chongo/tech/comp/calc/ 

- https://github.com/arcetri/gmprime 
- Written in C 
- Implements the algorithm of http://www.isthe.com/chongo/src/calc/lucas-calc 
- A potential code base from which to start optimization 
- Uses GMU MP 
- Extensive test code 
- Had debugging options 

- https://github.com/arcetri/goprime 
- A potential code base from which to start optimization  
- Once version written in go benchmarks several square methods 
- One version written in C that uses flint: http://www.flintlib.org 

- http://jpenne.free.fr/index2.html 
- LLR code implements Riesel test 
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Prior to finding U(2) - Riesel test setup
• Pretest: Verify h* 2n-1 is not a multiple of 3 

- Do not test if (h ≡ 1 mod 3   AND   n is even)   NOR    
                   if (h ≡ 2 mod 3   AND   n is odd) 
- This pretest is mandatory when h is not a multiple of 3 

- No need to test h*2n-1 because in this case 3 is a factor! 

• Test only odd h 
- Only test odd h, ignore even h 

- One can always divide h by 2 and add one to 1 until h becomes odd 

• Riesel test requires h < 2n 

- We recommend using odd h in this range: 2*n < h < 16*n 
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Calculating U(2) when h is not a multiple of 3
• Pretest: Verify that h*2n-1 is not a multiple of 3 

- Do not test if (h ≡ 1 mod 3   AND   n is even)   NOR    
                   if (h ≡ 2 mod 3   AND   n is odd) 

• Note that we are considering only the case when h is odd 
- For even h, divide h by 2 and add one to 1 until h becomes odd 

• Start with: 
- V(0) = 2 
- V(1) = 4        (NOTE: V(1) = 4 always works when h is not multiple of 3) 

• Compute V(h) using these recursion formulas: 
- V(i+1) = [V(1)*V(i) - V(i-1)] mod h*2n-1 

- V(2*i) = [V(i)2 - 2] mod h*2n-1 

- V(2*i+1) = [V(i)*V(i+1) - V(1)] mod h*2n-1 

• U(2) = V(h)
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Calculating U(2) when h is a multiple of 3
• Pretest: Verify that h*2n-1 is not a multiple of 3 

- Do not test if (h ≡ 1 mod 3   AND   n is even)   NOR    
                   if (h ≡ 2 mod 3   AND   n is odd) 

• Note that we are considering only the case when h is odd 
- For even h, divide h by 2 and add one to 1 until h becomes odd 

• Start with: 
- V(0) = 2 

- V(1) = X > 2 where Jacobi(X-2,  h*2n-1) = 1 

              and where Jacobi(X+2, h*2n-1) = -1 
- Jacobi(a,b) is the Jacobi Symbol 

- See “A note on primality tests for N = h*2n-1” 
An excellent 5 page paper by Öystein J. Rödseth, 
Department of Mathematics, University of Bergen, 
BIT Numerical Mathematics. 34 (3): 451–454. 
https://link.springer.com/article/10.1007/BF01935653 

• Compute V(h) using these recursion formulas: 
- V(i+1) = [V(1)*V(i) - V(i-1)] mod h*2n-1 

- V(2*i) = [V(i)2 - 2] mod h*2n-1 

- V(2*i+1) = [V(i)*V(i+1) - V(1)] mod h*2n-1 

• U(2) = V(h)
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Calculating the Jacobi symbol is easy
• Pre-condition:   b must be an odd (i.e., b ≡ 1 mod 2)     and     0 < a < b 

• Jacobi(a,b) { 
    j := 1 
    while (a is not 0) { 
        while (a is even) { 
            a := a / 2 
            if ((b ≡ 3 mod 8) or (b ≡ 5 mod 8)) 
                j := - j 
        } 
        temp := a;  a := b;  b := temp       // exchange a and b 
        if ((a ≡ 3 mod 4) and (b ≡ 3 mod 4)) 
            j := - j 
        a := a mod b 
    } 
    if (b is 1) 
        return j 
    else 
        return 0 
}
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• Try these values of X in the following order: 
- 3, 5, 9, 11, 15, 17, 21, 27, 29, 35, 39, 41, 45, 51, 57, 59, 65, 69, 81 

- Search the list for X  where Jacobi(X-2,  h*2n-1) = 1  and  Jacobi(X+2, h*2n-1) = -1 

Set V(1) to the first value of X that satisfies those 2 Jacobi equations 

- Fewer than 1 out of 1000000 cases, when h is an odd multiple of 3, are not satisfied by the above list 

• If none of those values work for V(1), test odd values of X starting at 83 
- Find first odd X ≥ 83 where Jacobi(X-2,  h*2n-1) = 1 and Jacobi(X+2, h*2n-1) = -1 

• An implementation of this method using C & GNU MP: 
- https://github.com/arcetri/gmprime

How to find V(1) when h is a multiple of 3
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How to find V(1) when h is NOT a multiple of 3
• To speed up generating U(2) = V(h), we need to find a small V(1) 

• If h is odd and not a multiple of 3, and 
if Jacobi(1,  h*2n-1) = 1 and Jacobi(5, h*2n-1) = -1 then 

- V(1) = 3 

• else 
- V(1) = 4 

• 40% of h*2n-1 values can use a V(1) value of 3 
- 4 always works for h*2n-1 when h is not a multiple of 3 

• An implementation of this method using C & GNU MP: 
- https://github.com/arcetri/gmprime
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Riesel Test example: 7*25-1 = 223
• 7*25-1 is prime if and only if 7 < 25 and U5 ≡ 0 mod 7*25-1 

- V(0) = 2 
- V(1) = 3   (because Jacobi(1,223) == 1 and Jacobi(5,223) == -1, we could also use 4 because h==7 is not a multiple of 3) 

- V(i+1) = [V(1)*V(i) - V(i-1)] mod h*2n-1 

- V(2*i) = [V(i)2 - 2] mod h*2n-1 

- V(2*i+1) = [V(i)*V(i+1) - V(1)] mod h*2n-1 

• Calculating V(7) from V(0) and V(1) 
- V(0) = 2 
- V(1) = 3   (because Jacobi(1,223) == 1 and Jacobi(5,223) == -1, see the previous slide) 

- V(2) = [V[1]2 - 2] mod 223 = 7 
- V(3) = [V[1]*V[2] - V[1]] mod 223 = 18 
- V(4) = [V[2]2 - 2] mod 223 = 47 
- V(5) = [V(1)*V(4) - V(3)] mod 223 = 123 
- V(6) = [V(1)*V(5) - V(4)] mod 223 = 99 
- V(7) = [V(1)*V(6) - V(5)] mod 223 = 174
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Riesel Test example: 7*25-1 = 223
• 7*25-1 is prime if and only if 7 < 25 and U5 ≡ 0 mod 7*25-1 

- U2 = V(h) 

- Ux+1 ≡ Ux2 - 2 mod h*2n-1 

• Riesel test: 7*25-1 = 223 

• U2 = V(7) = 174 

• U3 = 1742 - 2  =  30274 mod 223  ≡  169 

• U4 = 1692 - 2  =  28559 mod 223  ≡  15 

• U5 =   152 - 2  =      223 mod 223  ≡  0 

• Because U5 ≡ 0 mod 223 we know that 7*25-1 = 223 is prime
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Calculating mod h*2n-1
• Very similar to the “shift and add” method for mod 2n-1 

• Split the value into two chunks: 

• Then Ux2-2 mod h*2n-1 ≡ int(J/h) + (J mod h)*2n + K 

• If int(J/h) + (J mod h)*2n + K > h*2n-1 then repeat the above 

• Mod h*2n-1 can be done in O(d) steps
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Keep h single precision, but not too single!
• Calculating mod h*2n-1 requires computing: int(J/h) + (J mod h)*2n + K 

- K is the first n bits, J is everything beyond the first n bits: 

• Calculating int(J/h) and (J mod h) takes more time for double precision h 
- keep h < 263 (when testing on a 64-bit machine) 

• Do NOT make h too small! 
- primes of the form h*2n-1 tend to be rare when h is tiny 

- Keep 2*n < h 

- But not too much greater than 2*n to avoid double precision mod speed issues 
- For example, keep: 2*n < h < 16*n
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261-1: Pre-screening Riesel Test Candidates
• Eliminate h*2n-1 values that are a multiple of small primes 

- Avoid testing large values are “obviously” not prime 

• We will use sieving techniques to quickly find multiples of small primes 

• In order to understand these sieving techniques ... 
- Let first look in detail, of how to use the “Sieve of Eratosthenes” to find tiny primes 
- Then we will apply these ideas to quickly eliminate Riesel candidates that are 

multiple or small primes
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• Sieve the integers 
- Given the integers: 
•  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 ... 

- Ignore 1 (we define it as not prime) 
• 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 ... 

- The next unmarked number is prime .. 2 
• 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 ... 

- .. cancel every 2nd value after that 
• 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 ... 

- The next value remaining, 3, is prime so mark it and cancel every 3rd value after that 
• 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 ... 

- And the same for 5 
• 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 ... 

- And 7      NOTE: Our list ends before 72 = 49, so the mark remaining values as 
prime 

• 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 ...

The Sieve of Eratosthenes
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• We can sieve over a segment of that integers that does not start with 1 
- Consider this list: 
• 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 ... 

- Start with 1st prime: 2, find the first multiple of 2, cancel it & every 2nd value 
• 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 ... 

- 2nd prime: 3, find the first multiple of 3, cancel it & every 3rd value 
• 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 ... 
- 3rd prime: 5, find the first multiple of 5, cancel it & every 5th value 
• 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 ... 
- 4th prime: 7, find the first multiple of 7, cancel it & every 7th value 
• 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 ... 
- 5th prime 11, find the first multiple of 11, cancel it & every 11th value 
• 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 ... 

- Because our list ends before 132 = 169, the rest are prime 
• 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 ...

When the List does NOT Start with 1
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Skipping the Even Numbers While Sieving
• When not starting at 1, we can ignore the even numbers and it still works 

- Consider this list: 
• 101 103 105 107 109 111 113 115 117 119 121 123 125 127 129 131 133 135 137 139 141 ... 

- No need to eliminate 2’s since the values are all odd 
- Start with 3, find the first multiple of 3, cancel it & every 3rd 
• 101 103 105 107 109 111 113 115 117 119 121 123 125 127 129 131 133 135 137 139 141 ... 

- 5: find the first multiple of 5, cancel it & every 5th value 
• 101 103 105 107 109 111 113 115 117 119 121 123 125 127 129 131 133 135 137 139 141 ... 

- 7: find the first multiple of 7, cancel it & every 7th value 
• 101 103 105 107 109 111 113 115 117 119 121 123 125 127 129 131 133 135 137 139 141 ... 

- 11: find the first multiple of 11, cancel it & every 11th value 
• 101 103 105 107 109 111 113 115 117 119 121 123 125 127 129 131 133 135 137 139 141 ... 

- Because our list ends before 132 = 169, the rest are prime 
• 101 103 105 107 109 111 113 115 117 119 121 123 125 127 129 131 133 135 137 139 141 ...
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• Consider the following arithmetic sequence 
- We will use the sequence 10*x + 1 
• 101 111 121 131 141 151 161 171 181 191 201 211 221 231 241 251 261 271 281 291 301 ... 

- None of the values are multiples of 2, so 3: find the first multiple of 3, cancel every 3rd 
• 101 111 121 131 141 151 161 171 181 191 201 211 221 231 241 251 261 271 281 291 301 ... 

- None of the values are multiples of 5, so 7: find the first multiple of 7, cancel every 7th 
• 101 111 121 131 141 151 161 171 181 191 201 211 221 231 241 251 261 271 281 291 301 ... 

- 11: find the first multiple of 11, cancel it & every 11th value 
• 101 111 121 131 141 151 161 171 181 191 201 211 221 231 241 251 261 271 281 291 301 ... 

- 13: find the first multiple of 13, cancel it & every 13th value 
• 101 111 121 131 141 151 161 171 181 191 201 211 221 231 241 251 261 271 281 291 301 ... 

- 17: find the first multiple of 17, cancel it & every 17th value 
• 101 111 121 131 141 151 161 171 181 191 201 211 221 231 241 251 261 271 281 291 301 ... 

- Because our list ends before 192 = 361, the rest are prime 
• 101 111 121 131 141 151 161 171 181 191 201 211 221 231 241 251 261 271 281 291 301 ...

Sieving Over an Arithmetic Sequence
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Sieving Over a Sequence of Riesel Sequence  
• For a given n, as h increases, h*2n-1 is an arithmetic sequence 

-  Consider h*25-1 for increasing h, all of which are odd so we need not sieve for 2 
• 1*25-1=31     2*25-1=63     3*25-1=95     4*25-1=127     5*25-1=159     6*25-1=191     7*25-1=223     8*25-1=255     9*25-1=287 

- 3: find the first multiple of 3, and then cancel every 3rd 
• 1*25-1=31     2*25-1=63     3*25-1=95     4*25-1=127     5*25-1=159     6*25-1=191     7*25-1=223     8*25-1=255     9*25-1=287 

- 5: find the first multiple of 5, cancel it, and then cancel every 5th value 
• 1*25-1=31     2*25-1=63     3*25-1=95     4*25-1=127     5*25-1=159     6*25-1=191     7*25-1=223     8*25-1=255     9*25-1=287 

- 7: find the first multiple of 7, cancel it, and then cancel every 7th value 
• 1*25-1=31     2*25-1=63     3*25-1=95     4*25-1=127     5*25-1=159     6*25-1=191     7*25-1=223     8*25-1=255     9*25-1=287 

- 11: find the first multiple of 11 .. there is none in this list, so skip it 
- 13: find the first multiple of 13 .. there is none in this list, so skip it 

- Because our list ends before 172 = 289, the rest are prime 

• Sieving a Riesel Sequence is not useful for finding a large prime 
- It helps quickly identify Riesel numbers that are NOT prime so we won’t waste time on them 

• Now let return to the quickly eliminating multiples of small primes ...
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Pre-screening Riesel Candidates by Sieving
• Given an arithmetic sequence of Riesel numbers: h*2n-1   

- for  2*n < h < 16*n 

• Our list (an arithmetic sequence) to candidates becomes: 
- (2n+1)*2n-1    (2n+2)*2n-1    (2n+3)*2n-1    (2n+4)*2n-1    …    (16n-1)*2n-1 

• Build an array of bytes: c[0] c[1] .. c[2*n] c[2*n+1] .. c[16*n-1] 
- Where c[h] represents the candidate: h*2n-1 
- Initially set c[0] .. c[2*n] = 0 as these values have too small of an h to be useful 

- c[0] ==  0*2n-1 == 0 does not need to be primality tested 

- c[1] ==  1*2n-1 == a mersenne number, might need to be primality tested, but is unlikely to be prime and isn’t when n is not prime 

- Set c[2*n+1] .. c[16*n-1] = 1 
- These Riesel candidates have a 2*n < h < 16*n 

• For each test factor Q, find the first element, c[X], that is a multiple of Q 
- See the next slide for how we find the first element, X*2n-1, that is a multiple of Q 

• Clear c[X] and clear every Q-th element just like we did those sieve examples 
- for (y=X; y < 16*n; y += Q) { c[y] = 0; } /* these values are multiples of Q and therefore not prime */
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How to Find the First Element that is Multiple of Q
• How to find the first X where X*2n-1 is a multiple Q 

- We assume that Q is odd 
- Since X*2n-1 is never even, one never needs to consider even values of Q 

• Let R = 2n mod Q 
- See the next 3 slides for how to compute R 

• Let S = Modular multiplicative inverse of R mod Q 
- https://en.wikipedia.org/wiki/Modular_multiplicative_inverse 
- https://rosettacode.org/wiki/Modular_inverse#C 
- See 4 slides down for how we compute the modular multiplicative inverse 

• Then the first h where h*2n-1 is a multiple Q is: S*2n-1 
- Sieve out c[S], c[S+Q], c[S+(2*Q)], c[S+(3*Q)], c[S+(4*Q)], c[S+(5*Q)], … 

- These are all multiples of Q and therefore cannot be prime
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How to Quickly Compute R = 2n mod Q
• One can quickly compute R = 2n mod Q by modular exponentiation 

• Observe that: 
- If y = 2x mod Q 

- then  2(2x) mod Q = y2 mod Q           (the  0-bit case) 

- and   2(2x+1) mod Q = 2*y2 mod Q   (the  1-bit case)
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Minimize the 1-bits in n for Speed’s Sake!
• Note that computing R = 2n mod Q is faster 

when n, in binary, has fewer 1 bits 

• For each 0-bit in n: 
- square and mod 

• For each 1-bit in n: 
- square, multiply by 2, then mod 

• It is best to minimize the number of 1-bits in n 
- Choose an n that is a small multiple of a power of 2 

- Such values of n have lots of 0-bits at the bottom
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The Modular Exponent Trick - Small Example
• Compute R = 2117 mod 3391 

- In the example, we are pre-screening candidates of the form h*2n-1, where n = 117  
- We show how to compute R = 2117 mod Q, where Q = 3391 is an example test factor 

• The exponent of 2, in binary, is 117: 1110101, we start with some leading bits 
- We start with on the leading 3 bits just for purposes of illustration 
- On CPUs with w-bit words, you should start with the w leading bits 

• 27: Start with the leading bits where we can raise 2 to that power 
- Raise 2 to the leading 3 bits and mod:                 27 mod 3391 ≡ 128 

• 214: Next bit in the exponent,  1110101 is 0: 
- 0-bit: square and mod:                                      1282 mod 3391 ≡ 2820 

• 229: Next bit in the exponent,  1110101 is 1:  
- 1-bit: square, multiply by 2, then mod:        2*28202 mod 3391 ≡ 1010 

• 258: Next bit in the exponent,  1110101 is 0: 
- 0-bit: square and mod:                                    10102 mod 3391 ≡ 2800 

• 2117: Next bit in the exponent, 1110101 is 1: 
- 1-bit: square, multiply by 2, then mod:       2*28002 mod 3391 ≡ 16 

• Thus R = 2117 mod 3391 ≡ 16 

• While computing R = 2n mod Q, the largest value encountered is < 2*Q2
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How to find the Modular Multiplicative Inverse of 
R mod Q
• /*  
 * mul_inv - Modular Multiplicative Inverse 
 *  
 * given: 
 *       R   an integer 
 *       Q   an integer > 0 and where gcd(R,Q) = 1 
 *           (i.e., R and Q have no common prime factors) 
 * 
 * returns: 
 *       S = Modular Multiplicative Inverse of R mod Q 
 */ 
int 
mul_inv(int R, int Q) 
{ 
    int Q0 = Q, t, q; 
    int x0 = 0, S = 1; 
    if (Q == 1) return 1; 
    while (R > 1) { 
        q = R / Q; 
        t = Q; Q = R % Q; R = t; 
        t = x0; x0 = S - q * x0; S = t; 
    } 
    if (S < 0) S += Q0; 
    return S; 
}
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How Deep Should we Sieve? A Practical Answer
• Sieve Riesel candidates until the time between sieve eliminations becomes 

longer than the time it takes to run a Riesel Test 
- When it takes longer for the sieve to turn a c[y] from 1 to 0, just do Riesel tests 

• From experience: Sieve screening can eliminate >98.5% of candidates 

• NOTE: If you happen to sieve for a small non-prime, you just waste time 
- You simply just won’t eliminate c[y] values that haven't already been eliminated 

• However the work to determine of Q is prime may 
waste too much time!  So how much work is OK?  

- Start sieving array of odd Q values while simultaneously 
sieving Riesel candidates with Q’s that remain standing 

- When the time it takes to eliminate an odd Q is longer 
than the time to do a single sieve of Riesel candidates, 
stop sieving Q values and just Sieve Riesel candidates
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Riesel Test Revisited
• Pick large n and start with a table of h*2n-1 where 2*n < h < limit 

- Where limit is less than the word size (say h < 232 or h < 264) 
- Start with some practical range for h, say: 2*n < h < 16*n 

• Look for small factors by sieving, tossing out those with factors of small primes 

• For each h*2n-1 remaining, perform the Riesel test (almost as fast as the Lucas-Lehmer) 
- U2 = V(h)  and Ux+1 ≡ Ux2 - 2 mod h*2n-1 until Un is computed 

- Pad Ux with leading 0’s (at least p bits, more if required by Transform size) 
- Transform 
- Square each point 
- Inverse Transform 
- Round to integers and/or normalize as needed 
- Propagate carries 
- Subtract 2 

- Mod h*2n-1 using a slightly more involved “shift and add” method 

- If Up ≡ 0 then h*2n-1 is prime, otherwise it is not prime
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Cray Records Return - Amdahl 6 lesson ignored
• 1992: M(756839)    227 832 digits    Slowinski & Gage using the Cray 2 
• 1994: M(859433)    258 716 digits    Slowinski & Gage using the Cray C90 
• 1995: M(1257787)  378 632 digits    Slowinski & Gage using the Cray T94
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GIMPS Record Era - Just testing 2n-1
• Great Internet Mersenne Prime Search - Testing only Mersenne numbers (test 2n -1 only, not h*2n -1) 

- https://www.mersenne.org 
- Woltman, Kurowski, et al. using Crandall’s Transform Square Algorithm 

• 1996:   M(1398269)          420 921 digits    GIMPS + Armengaud 

• 1997:   M(2976221)          895 932 digits    GIMPS + Spence 

• 1998:   M(3021377)          909 526 digits    GIMPS + Clarkson 

• 1999:   M(6972593)       2 098 960 digits    GIMPS + Hajratwala 
- $50 000 Cooperative Computing Award winner - 1st known million digit prime 

• 2001: M(13466917)       4 053 946 digits    GIMPS + Cameron 

• 2003: M(20996011)       6 320 430 digits    GIMPS + Shafer 

• 2004: M(24036583)      7 235 733 digits    GIMPS + Findley 

• 2005: M(25964951)      7 816 230 digits    GIMPS + Nowak 

• 2005: M(30402457)      9 152 052 digits    GIMPS + Cooper * 

• 2006: M(32582657)      9 808 358 digits    GIMPS + Cooper * 

• 2008: M(43112609)    12 978 189 digits    GIMPS + Smith 
- $100 000 Cooperative Computing Award winner - 1st known 10 million digit prime 

• 2013: M(57885161)    17 425 170 digits    GIMPS + Cooper * 

• 2016: M(74207281)    22 338 618 digits    GIMPS + Cooper * 

• 2017: M(77232917)    23 249 425 digits    GIMPS + Pace 

• 2018: M(82589933)    24 862 048 digits    GIMPS + Laroche
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To be Fair to GIMPS
• GIMPS stands for Great Internet Mersenne Prime Search 

• GIMPS is about searching for Mersenne Primes Only 

• While testing Riesel numbers h*2n-1 may be faster ... 
- Riesel testing is outside of their “charter” / purpose
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289-1: Multiply+Add in Linear Time
• You can perform a n-bit multiply AND an n-bit add in 2*n clock cycles 

- If you have ⎡n/3⎤simple 11-bit state machines 

- ⎡n/3⎤mean n/3 rounded up to the next integer 

- See Knuth: Art of Computer Programming, Vol. 2, Section 4.3.3 E 

• Calculates u*v + q = a 
- The machine does a multiply and an add at the same time 

• Can calculate Un2 - 2 in 2*n clock cycles 
- using ⎡n/3⎤simple 11-bit state machines 

• Hardware can do the slightly more involved “shift and add” in parallel 
- With the machine that is computing Ux2 - 2 

• Hardware can compute Un+1 in linear time!
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11 bits of State in Each Machine
• Each state machine as 11 bits of state: 

- c, x0, y0, x1, y1, x, y, z0, z1, z2 
• All binary bits except for c which is a 2-bit binary value 

• 0th state machine is special: 
- 3, 0, 0, 0, 0, u(t), v(t), 0, 0, q(t) 
- The input bits are feed into x—>u(t),  

                                             y—>v(t), 
                                           z2—>q(t) 

- c is always 3, the other bits are always 0 

• 1st state machine’s z0 holds the answers at time t ≥ 1: 
- That z0 bit, at time t+1 holds bit t of the answer 

- answer bit of: a = u * v + q
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Build an Array of State Machines
• Assume a linear array of state machines S[0], S[1], S[2], … 

- If u, v, q are n-bits you need S[0] thru S[int(n/3)+1] 
- Initialize all state machine bits except S[0] are set to 0 

• On each clock all state machines except the 0th: 
- Receive 1 bit from the right, 3 bits from the left, and copy over 2 bits from the left  

• At clock t, feed in bit t of the input (u, v, q) into the 0th state machine’s x, y, z2 
- When after the last input bit is feed, feed 0 bits 

• Bit t of the answer is found in z0 of the 1st state machine at clock t+1
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Simple State Machine Rules 
These apply to all except left most machine
• On each clock, state machines compute (z2, z1, z0): 

- Obtain z0 from right neighbor      (call it z0Rr) 
- Obtain x, y, z2 from left neighbor (call them xL, yL, z2L) 
- If c == 0, (z2,z1,z0) = z0R + z1 + z2L + (xL & yL) 
- If c == 1, (z2,z1,z0) = z0R + z1 + z2L + (x0 & yL) + (xL & y0) 
- If c == 2, (z2,z1,z0) = z0R + z1 + z2L + (x0 & yL) + (xL & y0) + (x1 & y1) 
- If c == 3, (z2,z1,z0) = z0R + z1 + z2L + (x0 & yL) + (xL & y0) + (x1 & y)   + (x & y1) 
• & means logical AND and + means add bits together into the 3 bit value (z2, z1, z0) 

• On each clock, state machines copy from the left depending on c: 
- If c == 0, then copy x0,y0 from left neighbor into x0,y0 
- If c == 1, then copy x1,y1 from left neighbor into x1,y1 
- If c > 1,   then copy x,   y  from left neighbor into x  ,y 

• On each clock, state machine increment c until it reaches 3: 
- c = minimum of (c+1, 3) 

- c is a 2-bit value
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27.6 Million State Machine Array @ 100 GHz
• Multiply two 82.8 million bit numbers & add a 82.8 million bit digit number 

- In 0.00166 seconds! 

• For Lucas-Lehmer or Riesel test: 
- Compute u*u + (-2) 

- Make u(t) = v(t) for all clocks 
- Add in the 2’s compliment of -2 

- A simple front-end circuit can perform the “shift & add” for the mod 

• Current record (as of 2019 Apr 16) is a 82 589 933 digit prime took 12 days 
- Used GIMPS code from http://www.mersenne.org 
- PC with an Intel i5-6600 CPU 

• At 100 GHz, this machine could Riesel test a record sized prime in 37.9 hours! 
- More than 7.6 times faster per test! 
- It is certainly possible to build an ASIC with an even faster internal clock 
- Method increases linearly O(n) as the exponent grows 

- O(n) is MUCH better than O(n ln n), so for larger tests, this method will eventually become even faster than FFTs in software! 

• Of course, you would need multiple units to be competitive with GIMPS
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2127-1: Final Words and Some Encouragement
• Results (and records) goes to the first to calculate CORRECTLY ... 

- … not necessarily to the fastest tester 

• A slow correct answer in infinitely better than a fast wrong answer! 

• Compute smarter 
- You do NOT need to have the fastest machine to be the first to prove primality 

- My 8 world records related to prime numbers did NOT use the fastest machine 

• Pre-mature optimization is the bane of a correctly 
running program 

- Write your comments first 
- Code something that works, updating comments as needed 

- Start that code running 

- Then incrementally improve the comments, improve the code & retest 
- Update the running code when you are confident it works
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Test, test and TEST!
• Don’t trust the CPU / ALU  

- Put in checksums to sanity check square 
- Put in checksums to sanity check mod 
- 2001 Intel Celeron CPU had a Mean Time Between Errors (MTBE) of only 37 weeks! 

• Don’t trust the Memory or Memory management 
- Uniquely mark pages in memory 

- Check for bad page fetches 

• Don’t trust the system 
- Checkpoint in the middle of calculations 

- Restart program at last checkpoint 

- Backup! Test your backups! 
- Checksum code and data tables! 

• Confirm all primality tests 
- After a number is tested, recheck the result! 

- Compare final Ux values 
- Test on different hardware 
- Better still, use different code to confirm test results
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Most CPU cycles are NOT spent primality testing
• Expect to spend 1/3 or more of CPU time eliminating test candidates 

• Expect to primality test each remaining test candidate at least twice 

• Expect to spend 1/4 or more of CPU time in error checking 

• Typically only 25% of CPU cycles will test a new prime candidate 
- ((100% - 1/3) / 2) * (1 - 1/4) = 25% 

• You must verify (recheck your test) and have someone else 
independently verify (3rd test) 

- So plan on the time to test the number at least 3 times! 

• While nothing is 100% error free: 
- Q: What is “mathematical truth”?     A: The pragmatic answer: 

- Mathematical truth is something that the mathematical community has studied 
(peer reviewed) and has been shown to be true
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Find a new largest known prime (> 282589933-1)
• Pick some n a bit larger than 82589933, say n = 82837504 

- If n as mostly 0 bits, the sieve (to eliminate potential candidates) goes faster 
- n = 100111100000000000000000000 in binary 

- Start with some practical range for h, say 165675008 < h < 1325400064 
- 2*82837504 < h < 16*82837504 

• Look for small factors by sieving, tossing out those with factors that are not prime 
- Eliminate more than 98.5% of the candidates 

- before the sieve starts to take more time to eliminate a candidate than a prime test takes to run 

• For each h*282837504-1 remaining, perform the Riesel test 
- U2 = V(h)  and Ux+1 ≡ Ux2 - 2 mod h*282837504-1 until U82837504 is computed 

- Pad Ux with leading 0’s (at least p bits, more if required by Transform size) 
- Transform 
- Square each point 
- Inverse Transform 
- Round to integers 
- Propagate carries 
- Subtract 2 

- Mod h*2n-1 using a slightly more involved “shift and add” method 

- If Up ≡ 0 then h*282837504-1 is prime, otherwise it is not prime
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Riesel tests to find a new largest known prime
• Odds of h*282837504-1 prime ... 

- where 165675008 < h < 1325400064 
• where 2*82837504 < h < 16*82837504 

• is about 1 in 2*ln(h*282837504-1) 
- About 1 in 2*(ln(h)+(82837504*ln(2))) 
• 1 in 107 569 027 for h near 114837203 
• 1 in 107 569 032 for h near 114837207 

• Assume sieving eliminates >98.5% of the candidates 

• Expect to perform about  1 613 535  Riesel tests of h*282837504-1
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Finding a new largest known prime
• Could one of us, or a team among us find a new largest known prime? 

- Yes! 
• Focus on correctness of coding 

- Write code that runs correctly the first time  
• You don’t have time to rerun! 

• Focus on error correction and detection 
- Don’t blindly trust hardware, firmware, operating system, system, drivers, compilers, etc. 
- Consider developing a tool to test newly manufactured hardware 
- Consider developing a tool that uses otherwise idle cycles 

• Compute smarter 
- Hardware people: Consider building a fast multiply/add circuit  
- You do NOT need to use the fastest computer to gain a new world record! 
- Efficient networking between compute nodes will be key!
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Don’t Become Discouraged
• As Dr. Lehmer was fond of saying: 

• Don’t get discouraged 
- You are searching on a many-sided polygon - you just have to find the right corner 

• Work in a small team 
- Make use of complimentary strengths 

• Write your own code where reasonable 
- Have different team members check each other’s code 
- When you use outside code 
• Always start with the source 
• Study their code, check for correctness, learn that code so well that you could write it yourself 

- You might end up re-writing it once you really understand what their code does
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And Above All ...
• Could someone in this room find a new largest known prime? 

- Yes! 
• You CAN find a new largest known prime! 

- Never let someone tell you, you can’t!
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2521-1: Resources
• The Prime Pages: 

- https://primes.utm.edu/ 
- https://primes.utm.edu/notes/by_year.html#3 
- https://primes.utm.edu/prove/index.html 

• Amdahl 6 method for implementing the Riesel test: 
- http://www.isthe.com/chongo/src/calc/lucas-calc 
- http://www.isthe.com/chongo/tech/comp/calc/index.html 

• Transform resources and multiplication: 
- https://tonjanee.home.xs4all.nl/SSAdescription.pdf 
- http://www.flintlib.org 
- http://www.fftw.org/ 
- https://en.wikipedia.org/wiki/Discrete_Fourier_transform#Polynomial_multiplication 
- http://www.apfloat.org/ntt.html 
- https://gmplib.org 
- https://arxiv.org/abs/0801.1416 
- https://cr.yp.to/f2mult/mateer-thesis.pdf 
- https://www.ams.org/journals/mcom/1994-62-205/S0025-5718-1994-1185244-1/

S0025-5718-1994-1185244-1.pdf 
- https://www.daemonology.net/papers/fft.pdf
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2521-1: Resources II
• Riesel primality test code: 

- https://github.com/arcetri/gmprime 
- https://github.com/arcetri/goprime 
- http://jpenne.free.fr/index2.html 

• Verified primes of the form h*2n-1 
- https://github.com/arcetri/verified-prime 

• GIMPS: 
- https://www.mersenne.org 
- https://www.mersenne.org/download/ 

• On English names of large numbers: 
- http://www.isthe.com/chongo/tech/math/number/number.html 
- http://www.isthe.com/chongo/tech/math/number/howhigh.html  

• Mersenne primes and the largest known Mersenne prime: 
- http://www.isthe.com/chongo/tech/math/prime/mersenne.html 
- http://www.isthe.com/chongo/tech/math/prime/mersenne.html#largest  

• Cooperative Computing Award: 
- https://www.eff.org/awards/coop 
- https://www.eff.org/awards/coop/rules 

• Obtain a recent edition of Knuth’s: 
- The Art of Computer Programming, Volume 2, Semi-Numerical Algorithms: Especially Sections 4.3.1, 4.3.2, 4.3.3
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www.isthe.com/chongo/tech/math/prime/prime-tutorial.pdf 
Questions for Part 2
• 1) Why is it faster to search for a large prime of the form 

     h*2n-1 than 2p-1? 
- Hint: See 69, 70 

• 2) Assume M(92798969) is proven prime, what would a good choice of n 
    (exponent of 2) to use when searching for a new largest known prime? 

- Hint: 92798969 in binary is: 101100001111111111111111001 
- Hint: See slides 92, 93, 94 

• 3) How many state machines would it take to test 215802117*277594624-1? 
- Hint: See slides 101, 105 

• 4) What types of error checking could help correctly find a new largest known prime? 
- Hint: See slides 106, 107 

• 5) Prove that 19*25-1 = 607 is prime using the Riesel Test 
- Hint: U(2) = V(19) = 52 

- V(1) = 3     (although V(1) = 4 also works) 

- Hint: See slides 74, 75, 76, 80, 81
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Bottom of talk. 

Any Questions? 

Thank you.
Landon Noll Touching the South Geographic Pole ± 1cm
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