
© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

Landon Curt Noll

www.isthe.com/chongo
v1.85 — 2022 Apr 25

A Grand Coding Challenge!
Finding a new Largest Known Prime
The Great indoor sport of hunting for
world record-sized prime numbers

1

“Two is a most odd prime
 because
 Two is the least even prime.”

 -- Dr. Dan Jurca

“That’s a big prime!”

 Image by Matthew Harvey © 2003

http://www.isthe.com/chongo/tech/math/prime/prime-tutorial.pdf

http://creativecommons.org/licenses/by-sa/3.0/us/
http://www.isthe.com/chongo
http://www.mcs.uvawise.edu/msh3e/
http://www.isthe.com/chongo/tech/math/prime/prime-tutorial.pdf

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

Agenda - Part 1 - Mersenne Primes
• Part 1.A & 1.B - 75 minutes (09:00 - 10:15)

• 22-1: What is a Prime Number?

• 23-1: 423+ Years of Largest known primes

• 25-1: Factoring vs. Primality Testing

• 27-1: Lucas-Lehmer Test for Mersenne Numbers

• 213-1: The Mersenne Exponential Wall

• 217-1: Pre-screening Lucas-Lehmer Test Candidates

• 219-1: How Fast Can You Square?

• Part 1 Exercise and Quiz - 10 minutes (10:15 - 10:25)

• Discuss Part 1 Questions - 5 minutes (10:25 - 10:30)
2

Image Credit:
Flickr user forkergirl 

Creative Commons License

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

Agenda - Break
• Break - 30 minutes (10:30 - 11:00)

3

Image Credit:
Flickr user Rajiv Patel (Rajiv's View) 

Creative Commons License

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

Agenda - Part 2 - Large Riesel Primes Faster
• Part 2 - 75 minutes (11:00 - 12:15)

• 231-1: Riesel Test: Searching sideways

• 261-1: Pre-screening Riesel test candidates

• 289-1: Multiply+Add in Linear Time

• 2127-1: Final Words and Some Encouragement

• 2521-1: Resources

• Part 2 Exercise and Quiz - 10 minutes (12:15 - 12:25)
• Discuss Part 2 Questions - 5 minutes (12:25 - 12:30)

• Optional Discussion / General Q&A - As needed (12:30- TBD)

4

Image Credit:
Flickr user anarchosyn 
Creative Commons License

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

Part 1.A - Mersenne Primes
• 22-1: What is a Prime Number?

• 23-1: 423+ Years of Largest known primes

• 25-1: Factoring vs. Primality Testing

• 27-1: Lucas-Lehmer Test for Mersenne Numbers

5

King Henry VIII’s armor
Image Credit:

wallyg Flickr user 
Creative Commons License

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

Some Notation
• Common assumption in many number theory papers:

- A variable is an integer unless otherwise stated

• M(p) = 2p-1
- p is often prime :-)

• The symbol ≡ means “identical to”
- Think =

- Difference between = and ≡ is important to mathematicians
- The difference is not important to understand how to perform the test

• mod (short for modulus)
- Think “divide and leave the remainder”
- 5 mod 2 ≡ 1 14 mod 4 ≡ 2 21 mod 7 ≡ 0

6

Image credit:
Flickr user fatllama

Creative Commons License

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

22-1: What is a Prime Number?
• A natural number (1,2,3, …) is prime if and ONLY IF:

- it has only 2 distinct natural number divisors
- 1 and itself

• The first 25 primes:
- 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97

- There are 25 primes < 100

• 6 is not prime because: 2 * 3 = 6
- 1, 2, 3, and 6 are factors of 6 (i.e., 6 has 4 distinct natural number divisors)

7

Image Credit:
Flickr user amandabhslater 

Creative Commons License

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

Why is 1 not prime?
• Almost nobody on record defined 1 as prime until Stevin in 1585

• From the mid 18th century to the start of the 20th century
- There were many who called 1 a prime

• Today we commonly use definitions where 1 is not prime

• Fundamental theorem of arithmetic in commonly use today does not assume that 1 is prime
- Any natural number can be expressed as a unique (ignoring order) product of primes
- 1400 = 2 * 2 * 2 * 5 * 5 * 7

- No other product of primes = 1400

- If 1 were prime:
- 1400 = 2 * 2 * 2 * 5 * 5 * 7 * 1
- 1400 = 2 * 2 * 2 * 5 * 5 * 7 * 1 * 1* …

• Q: What is a “mathematical definition”? A: The pragmatic answer:
- .. something that the mathematical community agrees upon

• Q: What is a “mathematical truth”? A: The pragmatic answer:
- .. something that the mathematical community has studied and has been demonstrated to be true

8

Image by
Landon Curt Noll © 2011

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

What is the Largest Known Prime: 282589933-1
• 24 862 048 decimal digits

- 4973 pages (100 lines, 50 digits per line)
- https://lcn2.github.io/mersenne-english-name/m82589933/prime-c.html
• 1,488,944,457,420,413,
• 255,478,064,584,723,979,166,030,262,739,927,953,241,852,712,894,252,132,393,

- … 436 173 lines skipped here …
• 557,947,958,297,531,595,208,807,192,693,676,521,782,184,472,526,640,076,912,
• 114,355,308,311,969,487,633,766,457,823,695,074,037,951,210,325,217,902,591

• The English name for this prime is over 656 megabytes long:
- Double sided printing, 100 lines per side, requires over 82 reams (500 sheet per ream) of paper!
- https://lcn2.github.io/mersenne-english-name/m82589933/prime.html
• one octomilliamilliaduocenseptenoctoginmilliatrecenoctoquadragintillion,
• four hundred eighty eight octomilliamilliaduocenseptenoctoginmilliatrecenseptenquadragintillion,
• nine hundred forty four octomilliamilliaduocenseptenoctoginmilliatrecensexquadragintillion,

- … 8 280 068 lines skipped here …
• two hundred seventeen million,
• nine hundred two thousand,
• five hundred ninety one

9

Image by Matthew Harvey
© 2003

http://creativecommons.org/licenses/by-sa/3.0/us/
https://lcn2.github.io/mersenne-english-name/m82589933/prime-c.html
https://lcn2.github.io/mersenne-english-name/m82589933/prime.html
http://www.mcs.uvawise.edu/msh3e/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

There is No Largest Prime -
The Largest Known Prime Record can always be Broken!
• Assume there are finitely many primes (and 1 is not a prime)

• Let A be the product of “all primes”

• Let p be a prime that divides A+1

• Since p divides A
- Because A is the product of “all primes”

• And since p divides A+1

• Therefore p must divide 1
- Which is impossible

• Which contradicts our original assumption
10

Image Credit:
Flickr user jurvetson 

Creative Commons License

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

What is a Mersenne Prime?
• Mersenne number: 2n-1

- Examples: 23-1 211-1 267-1 223209-1

• A Mersenne prime is a mersenne number that is prime
- Examples: 23-1 223209-1

• Why the name Mersenne?
- Marin Mersenne: A 17th century french monk
• Mathematician, Philosopher, Musical Theorist

- Claimed when p = 2, 3, 5, 7, 13, 17, 19, 31, 67, 127, 257
then 2p-1 was prime
- 261-1 proven prime in 1883 - was Mersenne’s 67 was a typo of 61?

- 267-1 = 761838257287 × 193707721 in 1903 - Still a typo?

3 years of Saturdays for Cole to factor by hand:147573952589676412927

- 289-1 proven prime in 1911 - OK he missed one - 2nd strike

- 2107-1 proven prime in 1914 - 3rd strike - Forget it!

- After more than 300 years his name stuck
11

Image Credit:
Wikipedia

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

23-1: 423+ Years of Largest Known Primes
• Earliest explicit study of primes: Greeks (around 300 BCE)

• 1588: First published largest known primes
- Cataldi proved 131701 (217-1) &

524287 (219-1) were prime
- Produced an complete table of primes up to 743

- Made an exhaustive factor search of 217-1 & 219-1

By hand, using roman numerals!
- Held the record for more than 2 centuries!

• 1772: Euler proved 231-1 (2147483647) was prime
- A clever proof to eliminate almost all potential factors, trial division for the rest
- Euler said: “231-1 is probably the greatest (prime) that ever will be discovered …

 it is not likely that any person will attempt to find one beyond it.”

• 1867: Landry completely factored 259-1 = 179951 * 3203431780337
- 3203431780337 was the largest known prime by the fundamental theorem of arithmetic

- By trial division after eliminating almost all potential factors
12

Image Credit:
Wikipedia

Creative Commons License

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

25-1: Factoring vs. Primality testing
• Factoring and Prime testing methods overlap only in the trivial case:

• Useful to test numbers with only a “handful of digits”

• 1951: Ferrier factored 2148+1 and proved that (2148+1)/17 was prime
- Using a desk calculator after eliminating most factor candidates
- Largest record prime, 44 digits, discovered without the use of a digital computer

• Largest “general” number factored in 2012 had only 320 digits
- Primes larger than 320 digits were discovered in 1952

13

Proving Primality
by Factoring

Primality tests
2022 record is about

25 000 000
digits

Factoring
2022 record is about

320
digits

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

1st Prime Records without Factoring, by Hand
• 1876: Édouard Lucas proved 2127-1 was prime

- 170141183460469231731687303715884105727
- Édouard Lucas made significant contributions to our

understanding of Fibonacci-like Lucas sequences
- Lucas sequences are the heart of the Lucas-Lehmer test for

Mersenne Primes

• Lucas proved that 2127-1 had a property that
only possible when 2P-1 was prime

14

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

Pseudo-primality Tests
• Some mathematical tests are true when a number is prime

• A pseudo primality test
- A property that every prime number must pass …

however some non-primes also pass

• Fermat pseudoprime test
- If p is an odd prime, and a does not divide p, then a(p-1)-1 is divisible by p

- Let: p = 23 and a = 2 which is not a factor of 23, then 222-1 = 4194303 and 23 * 182361 = 4194303

- However 341 also passes the test
- for a = 2: 2340-1 is divisible by 341 but 341 = 11 * 31

• Passing a Pseudoprime test does NOT PROVE that a number is prime!
- Failing a Pseudoprime test only proves that a number is not prime

• There are an infinite number of Fermat pseudoprimes
- There are an infinite number of Fermat pseudoprimes that pass for every allowed value of “a”

- These are called Carmichael numbers

15

Image Credit:
Flickr user SpacePotato 
Creative Commons License

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

Lucas Sequences
• For a given P & Q

- U0 = 0 U1 = 1 Un = P*Un-1 - Q*Un-2 for n > 1

- V0 = 2 V1 = P Vn = P*Vn-1 - Q*Vn-2 for n > 1

• Fibonacci Sequence - Lucas Sequence special case
- P = 1 Q = -1 Un = P*Un-1 - Q*Un-2
- U0 = 1 U1 = 1 Un = Un-1 + Un-2
- 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, …

• Lucas Numbers - Useful for primality testing
- P = 1 Q = -1 Vn = P*Vn-1 - Q*Vn-2
- V0 = 2 V1 = 1 Vn = Vn-1 + Vn-2
- 2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, …

16

Image Credit:
Wikipedia

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

Lucas Pseudo-primes
• If n is prime, then Vn mod n = 1

- 2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, …

• However, Vn mod n = 1 for some n that are not prime:

• V705 % 705 = 1
• V2465 % 2465 = 1
• V2737 % 2737 = 1
• V3745 % 3745 = 1
• V4181 % 4181 = 1
• V5777 % 5777 = 1
• V6721 % 6721 = 1

17

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

Jumping ahead in the Lucas Sequence
• Vn = Vn-1 + Vn-2

• V2n = Vn 2 - 2

• V2n grows to be huge!

18

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

27-1: Lucas-Lehmer Test for Mersenne Numbers
• Some primality tests are definitive

• In 1930, Dr. D. H. Lehmer extended Lucas’s work
- This test was the subject of Dr. Lehmer’s Thesis

• Known as a Lucas-Lehmer test
- A definitive primality test

• The most efficient proof of primality known
- Work to prove primality vs. size of the number tested

- Theoretical argument suggests test may be the most efficient possible

• It was my honor and pleasure to study under Dr. Lehmer
- One of the greatest computational mathematicians of our time

- Like prime numbers, there will always be greater mathematicians :)

- Was willing to teach math to a couple of high school kids like me
19

Image Credit: Time-Life Magazine

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

Lucas Sequence for 2n-1
• S2 = 4

• Sn+1 = Sn 2 - 2

• If p is odd prime,

then for m = 2p-1,
if and only if Sm mod m = 0,
then m is prime!

• You don’t need the
exact value of Sm
only Sm mod m

20

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

Lucas-Lehmer test *
• M(p) = 2p-1 is prime IF AND ONLY IF p is odd prime and Up ≡ 0 mod (2p-1)

- Where U2 = 4

- and Ux+1 ≡ (Ux2 - 2) mod (2p-1)

21

* This is Landon Noll’s preferred version of the test:

 others let U1=4 and test for U(p-1) ≡ 0 mod 2p-1,

 and still others let U2=4 and test for U(p-1) ≡ 0 mod 2p-1

Image Credit: Wikipedia  
Creative Commons License

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

Lucas-Lehmer Test - Mersenne Prime Test
• Mersenne prime test for M(p) = 2p-1 where p is an odd prime

• Let U2 = 4

• Repeat until Up is calculated: Ui+1 ≡ (Ux2 - 2) mod (2p-1)
- Square the previous Ui term
- Subtract 2

- mod (2p-1) (divide by 2p-1 and take the remainder)

• Does the final Up ≡ 0 ???
- Yes - M(p) = 2p-1 is prime

- No - M(p) = 2p-1 is not prime

22

Minor Planet 8191
is named after Mersenne

8191 = 213-1

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

Lucas-Lehmer Test Example.0

• Is M(5) = 25-1 = 31 prime?

• 5 is odd prime so according to the Lucas-Lehmer test:
- 25-1 prime if and only if U5 ≡ 0 mod 31

- where U2 = 4 and Ux+1 ≡ Ux2 - 2 mod 31

• U2 = 4 (by definition)

23

Image Credit: 

Flickr user duegnazio  
Creative Commons License

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

Lucas-Lehmer Test Example.1

• Is M(5) = 25-1 = 31 prime?

• 5 is prime so according to the Lucas-Lehmer test:
- 25-1 prime if and only if U5 ≡ 0 mod 31

- where U2 = 4 and Ux+1 ≡ Ux2 - 2 mod 31

• U2 = 4 (by definition)

• U3 = 42 - 2 =

24

Image Credit: 

Flickr user duegnazio  
Creative Commons License

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

Lucas-Lehmer Test Example.2

• Is M(5) = 25-1 = 31 prime?

• 5 is prime so according to the Lucas-Lehmer test:
- 25-1 prime if and only if U5 ≡ 0 mod 31

- where U2 = 4 and Ux+1 ≡ Ux2 - 2 mod 31

• U2 = 4 (by definition)

• U3 = 42 - 2 = 14 mod 31 ≡

25

Image Credit: 

Flickr user duegnazio  
Creative Commons License

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

Lucas-Lehmer Test Example.3

• Is M(5) = 25-1 = 31 prime?

• 5 is prime so according to the Lucas-Lehmer test:
- 25-1 prime if and only if U5 ≡ 0 mod 31

- where U2 = 4 and Ux+1 ≡ Ux2 - 2 mod 31

• U2 = 4 (by definition)

• U3 = 42 - 2 = 14 mod 31 ≡ 14

• U4 = 142 - 2 =

26

Image Credit: 

Flickr user duegnazio  
Creative Commons License

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

Lucas-Lehmer Test Example.4

• Is M(5) = 25-1 = 31 prime?

• 5 is prime so according to the Lucas-Lehmer test:
- 25-1 prime if and only if U5 ≡ 0 mod 31

- where U2 = 4 and Ux+1 ≡ Ux2 - 2 mod 31

• U2 = 4 (by definition)

• U3 = 42 - 2 = 14 mod 31 ≡ 14

• U4 = 142 - 2 = 194 mod 31 ≡

27

Image Credit: 

Flickr user duegnazio  
Creative Commons License

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

Lucas-Lehmer Test Example.5

• Is M(5) = 25-1 = 31 prime?

• 5 is prime so according to the Lucas-Lehmer test:
- 25-1 prime if and only if U5 ≡ 0 mod 31

- where U2 = 4 and Ux+1 ≡ Ux2 - 2 mod 31

• U2 = 4 (by definition)

• U3 = 42 - 2 = 14 mod 31 ≡ 14

• U4 = 142 - 2 = 194 mod 31 ≡ 8

• U5 = 82 - 2 =

28

Image Credit: 

Flickr user duegnazio  
Creative Commons License

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

Lucas-Lehmer Test Example.6

• Is M(5) = 25-1 = 31 prime?

• 5 is prime so according to the Lucas-Lehmer test:
- 25-1 prime if and only if U5 ≡ 0 mod 31

- where U2 = 4 and Ux+1 ≡ Ux2 - 2 mod 31

• U2 = 4 (by definition)

• U3 = 42 - 2 = 14 mod 31 ≡ 14

• U4 = 142 - 2 = 194 mod 31 ≡ 8

• U5 = 82 - 2 = 62 mod 31 ≡

29

Image Credit: 

Flickr user duegnazio  
Creative Commons License

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

Lucas-Lehmer Test Example.7

• Is M(5) = 25-1 = 31 prime?

• 5 is prime so according to the Lucas-Lehmer test:
- 25-1 prime if and only if U5 ≡ 0 mod 31

- where U2 = 4 and Ux+1 ≡ Ux2 - 2 mod 31

• U2 = 4 (by definition)

• U3 = 42 - 2 = 14 mod 31 ≡ 14

• U4 = 142 - 2 = 194 mod 31 ≡ 8

• U5 = 82 - 2 = 62 mod 31 ≡ 0

• Because U5 ≡ 0 mod 31 we know that 31 is prime
30

Image Credit: 

Flickr user duegnazio  
Creative Commons License

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

Lucas-Lehmer Test Example II
• Is M(11) = 211-1 = 2047 prime?

• 11 is prime so according to the Lucas-Lehmer test:
- 211-1 prime if and only if U11 ≡ 0 mod 211-1

• Calculating U11
- U2 = 4 (by definition)

- U3 = 42 - 2 = 14 mod 2047 ≡ 14

- U4 = 142 - 2 = 194 mod 2047 ≡ 194

- U5 = 1942 - 2 = 37634 mod 2047 ≡ 788

- U6 = 7882 - 2 = 620942 mod 2047 ≡ 701

- U7 = 7012 - 2 = 491399 mod 2047 ≡ 119

- U8 = 1192 - 2 = 14159 mod 2047 ≡ 1877

- U9 = 18772 - 2 = 3523127 mod 2047 ≡ 240

- U10 = 2402 - 2 = 57598 mod 2047 ≡ 282

- U11 = 2822 - 2 = 79522 mod 2047 ≡ 1736 <<== not 0 therefore 2047 is not prime (23 * 89 = 2047)
31

Image Credit: 

Flickr user duegnazio  
Creative Commons License

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

Primality Testing in the Age of Digital Computers
• 1951: Miller and Wheeler proved 180*(2127-1)2 + 1 prime using EDSAC1

- 5210644015679228794060694325390955853335898483908056458352183851018372555735221

- A 79 digit prime
- Using a specialized proof of primality

• 1952: Robison and Lehmer using the SWAC using the Lucas-Lehmer test
- 1952 Jan 30 2521-1 is prime

- 1952 Jan 30 2607-1 is prime

- 1952 June 25 21279-1 is prime

- 1952 Oct 7 22203-1 is prime

- 1952 Oct 9 22281-1 is prime

• Robison coded the SWAC over the 1951 Christmas holiday
- By hand writing down the machine code as digits using only the SWAC manual
- Was Robison’s first computer program he ever wrote
- Ran successfully the very first time!

32

Image Credit:
Flickr user skreuzer 

Creative Commons License

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

Mersenne Prime Exponents must be Prime
• If M(p) = 2p-1 is prime, then p must be prime

• If x is not prime, then M(x) = 2x-1 is not prime

• Look at M(9) 29-1 in binary
- 111111111

• We can rewrite M(9) as this product:
- 1001001

x 111

111111111

• If x = y * z
- then M(x) has M(y) and M(z) as factors AND therefore M(x) cannot be prime

33

Landon Curt Noll and the
Palomar 200-inch telescope

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

Record Primes 1957 - 1961
• 1957: M(3217) 969 digits Riesel using BESK
• 1961: M(4423) 1332 digits Hurwitz & Selfridge using IBM 7090

- The M(4423) was proven the prime same evening M(4253) was proven prime
- Hurwitz noticed M(4423) before M(4253) because the way the output was stacked
- Selfridge asked:

- “Does a machine result need to be observed by a human before it can be said to be discovered?”

- Hurwitz responded:
- “… what if the computer operator who piled up the output looked?”

- Landon believes the answer to Selfridge’s question is yes
- Landon speculates that even if the computer operator looked,

they very likely did not understand the meaning of the output:
- Therefore Landon (and many others) believe M(4253) was

never the largest known prime

34

Image Credit:
Department of Computer Science 

UIUC

John Selfridge (1927 - 2010)

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

Record Primes at UIUC: 1963
• 1963: M(9668) 2917 digits Donald B. Gillies using the ILLIAC 2
• 1963: M(9941) 2993 digits Donald B. Gillies using the ILLIAC 2
• 1963: M(11213) 3376 digits Donald B. Gillies using the ILLIAC 2

• Largest known prime until:
• 1971: M(19937) 6002 digits Tuckerman using the IBM 360/91

35

Image Credit:
Chris K. Caldwell

Image Credits:
Department of Computer Science 

UIUC

Image Credit:
Landon Noll

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

Landon’s Record Primes: 1978 - 1979
• 1978: M(21701) 6533 digits Noll & Nickel using the CDC Cyber 174
• 1979: M(23209) 6987 digits Noll using the CDC Cyber 174

• 1st working version of the code took 500+ hours to test M(21001) on 1 April 1977
• The 1 Oct 1978 version took 7 hours, 40 minutes and 20 seconds to test M(21701)

- Proven prime on 1978 Oct 30

• Searched M(21001) thru M(24499) using 6000+ CPU Hours on Cyber 174
- Used the facility account and much encouragement from Dr. Dan Jurca

36

Image Credit:
Landon Curt NollLandon 367 days before

discovering M(21701)
Green Cake Reads:

“CHONGO 219937-1 is prime”

Image Credit:
Paul Noll

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

Cray Record Primes
• 1979: M(44497) 13 395 digits Nelson & Slowinski using the Cray 1
• 1982: M(86243) 25 962 digits Slowinski using the Cray 1
• 1983: M(132049) 39 751 digits Slowinski using the Cray X-MP
• 1985: M(216091) 65 050 digits Slowinski using the Cray X-MP/24

37

Image Credit:
Chris Caldwell

Nelson & Slowinski
Discovered M(44497)

Image credit: Wikipedia
Creative Commons License

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

Part 1.B - Mersenne Prime Search
• 213-1: The Mersenne Exponential Wall

• 217-1: Pre-screening Lucas-Lehmer Test Candidates

• 219-1: How Fast Can You Square?

38

Image Credit:
Daniel Gasienica 

Flickr user
Creative Commons License

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

213-1: The Mersenne Exponential Wall
• The Lucas-Lehmer Test for M(p) requires computing p-1 terms of Ui :

- Ui+1 ≡ Ui2 - 2 mod 2p-1

• That is p-1 times performing ...
- Sub-step 1: square a number

- Sub-step 2: subtract 2

- Sub-step 3: mod 2p-1

•… on numbers between 0 and 2p-2
- On average numbers that are p bits long

- or 2p bits when dealing with the result of the square

39

Image Credit:
Flickr user pigpogm 

Creative Commons License

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

Sub-step 1: Square
• Consider this classical multiply:

• On the average a d x d digit multiply requires O(d2) operations:
- Products: d2

- Adds: d2
40

 1 2 3
 x 4 5 6
 6 12 18
 5 10 15
+ 4 8 12 .
 4 13 28 27 18
carry 1 2 2 1

 5 5 10 8 8
carry 1
 5 6 0 8 8

3 x 3 digit multiply

9 products

5 adds

5 carry adds

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

Sub-step 2: subtract 2
• This step is trivial

• On average requires 1 subtraction
- O(1) steps

41

Child’s coffee cup © Yogi
Permission to use with attribution

http://www.flickr.com/photos/yogi/163796078/

http://creativecommons.org/licenses/by-sa/3.0/us/
http://www.flickr.com/photos/yogi/163796078/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

Sub-step 3: mod 2p-1 by Shift and Add
• It turns out that this is easy too!

- Just a shift and add!

• Split Ui2-2 into two chunks and make low order chunk p bits long:

• Then Ui2-2 mod 2p-1 ≡ J + K

• If J + K > 2p-1 then split again
- In this case the upper chunk will be 1, so just add 1 to the lower chunk

• So mod 2p-1 can be done in O(d) steps

42

KJUi2-2 =
p bits long

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

Sub-step 3: mod 2p-1 - An Example
• Split L into two chunks and make low order chunk p bits long:

• For p=31, U22 = 1992425718

• U222-2 = 3969760241747815522 =
-11011100010111011010111110100000111100110110001110110001100010

• J = 1101110001011101101011111010000
K = 0111100110110001110110001100010
J+K = 10101011000001111100010000110010

• Now J + K > 231-1 so peel off the upper 1 bit and add it into the bottom

• 0101011000001111100010000110010
 1
 0101011000001111100010000110011 = 721929267

• U23 = U222-2 mod 231-1 = 721929267

43

KJUx2-2 =
p bits long

31 bits long

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

So Computing U(x)
• Sub-step 1: square requires O(p2) operations

• Sub-step 2: subtract requires O(1) operation

• Sub-step 3: mod 2p-1 requires O(p) operations

• The time to square dominates over the time subtract and mod

• Computing Ui requires O(p2) operations

• We have to compute p-1 terms of Ui to test 2p-1

• The prime test is O(p3) operations

44

Image Credit: Wikipedia  
Creative Commons License

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

O(p3) doesn’t Scale Nicely as P Grows
• If it takes a computer 1 day to test M(p)

• 8 days to test M(2*p)

• 4 months to test M(5*p)

• 2.7 years to test M(10*p)

• etc. !!!

45

Image Credit:
Flickr user sylvia@intrigue 

Creative Commons License
Note that weight is in Kg

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

217-1: Pre-screening Lucas-Lehmer Test Candidates
• Performing the Lucas-Lehmer test on M(p) is time consuming

- Even if it is very a very efficient definitive test given the size of the number testing

• Try to pre-screen potential candidates by looking for tiny factors
- If you find a small factor of M(p) then there is no need to test

• It can be proven that a factor q of M(p) must be of this form:
- q ≡ 1 mod 8 or q ≡ 7 mod 8
- q = 2*k*p+1 for some integer k > 1

• Factor candidates of M(p) are either 4*p or 2*p apart
- When p is large, you can skip over a lot of potential factors of M(p)

46

Image Credit:
Flickr user {platinum}

Creative Commons License

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

Pre-screen Factoring Rule of Thumb
• For a given set of Mersenne candidates: M(a), M(b), … M(z)

- Where z is not much bigger than a (say a < z < a*1.1)
- Start factoring candidates until the rate of finding factors is slower than the Lucas-

Lehmer test for the M(z)

• Typically this rule of thumb will eliminate 50% of the candidates

47

Image Credit:
Flickr user raindog

Creative Commons License

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

219-1: How Fast Can You Square?
• The time to square dominates the subtract and mod

- So Mersenne Prime testing comes down to how fast can you square

48

Image Credit:
Laurie Sefton

Used by permission

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

Classical Square Slightly Faster Than Multiply
• Because the digits are the same on both, we can cut multiplies in half:

• On the average a d x d digit square requires O(d2) operations:
- Products: d2/2

- Shifts: d2/2 (shifts are faster than products)

- Adds: d2

49

 3 4 5 6
 x 3 4 5 6
 18 24 30 36
 15 20 25 30
 12 16 20 24
9 12 15 18

4 x 4 digit multiply

10 products
6 of which

 are doubled
by shifting

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

Reduce Digits by Increasing Base
• No need to multiply base 10

• If a computer can ...
- Multiply two B bit words produce a 2*B product
- Divide 2*B bit double word by B bit divisor and produce B bit dividend & remainder
- Add or Subtract B bit words and produce a B bit sum or difference

•… then represent your digits in base 2B

- Each B bit word will be a digit in base 2B

• Test M(p) requires p bit squares or p/B word squares

• Classical square requires O((p/B)2) operations
- The work still grows by the square of the digits O(d2)

50

Image Credit:
Laurie Sefton

Used by permission

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

Squaring by Transforms
• Convolution Theorem states:

- The Transform of the ordinary product equals dot product of the Transforms
- T(x*y) = T(x)・T(y)

- T(foo) is the transform of foo

• While ordinary product is O(p2) the dot product is O(p) !!!
- Dot product: a[0]*b[0] + a[1]*b[1] + a[2]*b[2] + …. + a[max]*b[max]

• Multiplication by transform:
- x*y = TINV(T(x)・T(y))
• TINV(foo) is the inverse transform of foo

• A Square by Transform can approach O(d ln d)
- ln d is natural log of d
- Scales much much better than O(d2)

51

Image Credit:
Flickr user fatllama 

Creative Commons License

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

Squaring by Transform II
• Fast Fourier Transform (FFT)

- An example of a Transform where the Convolution Theorem holds
- There are more efficient Transforms for digital computers

• To compute A = X2
- Step 1: Transform X: Y = T(X)

- Step 2: Compute dot product: Z = Y・Y

- Step 3: Inverse transform A = TINV(Z)

• The prime test is O(p2 ln p) operations with Transform Squaring
- ln p is natural log of p
- If it takes a computer 1 day to test M(p)
- 2.7 days to test M(2*p) (instead of 8 days)
- 40 days to test M(5*p) (instead of 4 months)
- 7.6 months to test M(10*p) (instead of 2.7 years)

52

Image Credit:
Flickr user jepoirrier 

Creative Commons License

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

Transform of an Integer?
• Treat the integer as a wave:

- with bit value amplitude
- with time starting from low order bit to high order bit
- 0 1 1 0 0 1 0 1

• Assume that wave form is infinitely repeating:
- 0 1 1 0 0 1 0 1 0 1 1 0 0 1 0 1 0 1 1 0 0 1 0 1 0 1 1 0 0 1 0 1 0 1 1 0 0 1 0 1 …

 …

• Convert that wave from time domain into frequency domain:
- Take the spectrum of the infinitely repeating waveform:

53

I faked this graph :-)

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

Digital Transforms are Approximations
• The effort to perform a perfect transform requires:

- Computing infinite sums with infinite precision
- Infinite operations are “Well beyond” the ability for finite computers to perform :-)

• Inverse Transform converts frequency domain ...

• ... back to time domain:
- 0.17 0.97 1.04 -0.21 -0.06 0.95 -0.18 0.89
- Because of “rounding” approximation errors the result is not pure binary
- So we round to the nearest integer:
- 0 1 1 0 0 1 0 1

• These examples assumed a 8-point 1D transform
54

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

Pad with Zeros to Hold the Final Product
• We need 2n bits to hold the product of two n-bit values

- The Transform needs twice the points to hold the product

• We add n leading 0’s to our values before we multiply:
- 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1

55

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

General Square Transform Algorithm
• To square p-bit value:

- Pad the value with p leading 0 bits
- Forms a 2*p-bit value: upper half 0’s and lower half the value we wish to square]

- The transform may require a certain number of points
- Such as a power of two number of points
- If needed, pad additional 0’s until the required number of points is achieved

- Perform the Transform on the padded value

- Convolve the signal in the transform space
- Dot product: Just 1 square for each transform point (not an n2 operation)

- Perform the Inverse Transform

- Divide the real part of each digit by the number of points and round to the nearest integer

- Propagate carries
56

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

FFT Square Example Output
• input: 0 0 3 2

• freq: (-1.251,3.001i) (0.248,0.003i) (-1.250,-3.005i) (6.257,0.007i)
- After transform - FFT errors exaggerated for dramatic effect

• fft output: (0.091,-0.041i) (35.896,0.055i) (47.916,-0.127i) (16.183,0.127i)
- after square and inverse transform - FFT errors exaggerated for dramatic effect

• round to integers: (0,0i) (36,0i) (48,0i) (16,0i)

• extract reals: 0 36 48 16

• scale output: 0 9 12 4
- Divide each cell by the initial number of cells

• After carries propagated: 1 0 2 4
57

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

FFT Square Example Makefile
• Try the FFTW library:

- http://www.fftw.org/

• Makefile:

58

FFT square example using fftw

See: http://www.fftw.org

chongo (Landon Curt Noll) /\oo/\ -- Share and Enjoy! :-)

fftsq: fftsq.c
 cc fftsq.c -lfftw3 -lm -Wall -o fftsq

http://creativecommons.org/licenses/by-sa/3.0/us/
http://www.fftw.org

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

FFT Square Example C Source.0

59

/*
 * FFT square example using fftw
 * See: http://www.fftw.org
 * chongo (Landon Curt Noll) /\oo/\ -- Share and Enjoy! :-)
 */

#define N 4 /* points in FFT */

/* digit arrays - least significant digit first */
long input[N] = { 2, 3, 0, 0 }; /* input integer, upper half 0 padded */
long output[N]; /* squared input */

#include <stdlib.h>
#include <math.h>
#include <fftw3.h>
#include <complex.h>

int
main(int argc, char *argv[])
{
 complex *in; /* input as complex values */
 complex *freq; /* transformed integer as complex values */
 complex *sq; /* squared input */
 fftw_plan trans; /* FFT plan for forward transform */
 fftw_plan invtrans; /* FFT plan for inverse transform */
 int i;

 /* allocate for fftw */
 in = (complex *) fftw_malloc(sizeof(fftw_complex) * N);
 freq = (complex *) fftw_malloc(sizeof(fftw_complex) * N);
 sq = (complex *) fftw_malloc(sizeof(fftw_complex) * N);

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

FFT Square Example C Source.1

60

 /*
 * load long integers into FFT input array
 */
 for (i=0; i < N; ++i) {
 in[i] = (complex)input[i]; /* long integer to complex conversion */
 }

 /* debugging */
 printf("input: ");
 for (i=N-1; i >= 0; --i) {
 printf(" %ld ", input[i]);
 }
 putchar('\n');

 /*
 * forward transform
 */
 trans = fftw_plan_dft_1d(N, (fftw_complex*)in, (fftw_complex*)freq,

 FFTW_FORWARD, FFTW_ESTIMATE);
 fftw_execute(trans);

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

FFT Square Example C Source.2

61

 /*
 * square the elements
 */
 for (i=0; i < N; ++i) {
 freq[i] = freq[i] * freq[i]; /* square the complex value */
 }

 /* debugging */
 printf("freq: ");
 for (i=N-1; i >= 0; --i) {
 printf("(%f,%fi) ", creal(freq[i])/N, cimag(freq[i])/N);
 }
 putchar('\n');

 /*
 * inverse transform
 */
 invtrans = fftw_plan_dft_1d(N, (fftw_complex*)freq, (fftw_complex*)sq,
 FFTW_BACKWARD, FFTW_ESTIMATE);
 fftw_execute(invtrans);

 /*
 * convert complex to rounded long integer
 */
 for (i=0; i < N; ++i) {
 output[i] = (long)(creal(sq[i]) / (double)N); /* complex to scaled long integer */
 }

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

FFT Square Example C Source.3

62

 /*
 * output the result
 */
 printf("fft output: ");
 for (i=N-1; i >= 0; --i) {
 printf("(%f,%fi) ", creal(sq[i]), cimag(sq[i]));
 }
 putchar('\n');
 /* NOTE: Carries are not propagated in this code */
 printf("scaled output: ");
 for (i=N-1; i >= 0; --i) {
 printf(" %ld ", output[i]);
 }
 putchar('\n');

 /*
 * cleanup
 */
 fftw_destroy_plan(trans);
 fftw_destroy_plan(invtrans);
 fftw_free(in);
 fftw_free(freq);
 fftw_free(sq);
 exit(0);
}

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

FFT Square Example C Source - Just the Facts

63

/* load long integers into FFT input array */
for (i=0; i < N; ++i) {
 in[i] = (complex)input[i]; /* long integer to complex conversion */
}

/* forward transform */
trans = fftw_plan_dft_1d(N, in, freq, FFTW_FORWARD, FFTW_ESTIMATE);
fftw_execute(trans);

/* square the elements */
for (i=0; i < N; ++i) {
 freq[i] = freq[i] * freq[i]; /* square the complex value */
}

/* inverse transform */
invtrans = fftw_plan_dft_1d(N, freq, sq, FFTW_BACKWARD, FFTW_ESTIMATE);
fftw_execute(invtrans);

/* convert complex to rounded long integer */
for (i=0; i < N; ++i) {
 output[i] = (long)(creal(sq[i]) / (double)N) /* complex to scaled long integer */
}
/* NOTE: TODO: propagate carries */

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

The Details are in the Rounding!
• Just like in classical multiplication / squaring

- Using a larger base helps
- We do not need to put 1 digit per cell like in the previous “examples”

• What base can we use?
- Too small of a base: Slows down the test!
- Too large of a base: The final rounding rounds to the wrong value

• Expect to use a base of “about 1/4” of the CPU’s numeric precision
- The Amdahl 1200 had a floating point 96 bit mantissa: 18900 point transform used a base of 223

• Analyze the digital rounding errors
- Estimate the maximum precision you can use
- Test your estimate
- Test worst case energy spike patterns
- Add check code to your multiply / square routine to catch any other mistakes

- Verify that Ux2 mod 264-3 = (Ux mod 264-3)2 mod 264-3

- Verify that complex part of point output rounds to 0
64

Image credit:
Flickr user veruus 

Creative Commons License

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

Try non-Fourier Transforms
• Some of the integer transforms perform well on some CPUs

- Especially where integer CPU ops are fast vs. floating point

• PFA Fast Fourier Transform and on Winograd's radix FFTs
- Used by Amdahl 6 to find a largest known prime

• Dr. Crandall’s transform
- See https://www.ams.org/journals/mcom/1994-62-205/S0025-5718-1994-1185244-1/

S0025-5718-1994-1185244-1.pdf
- GIMPS used Dr. Crandall’s transform to find many largest known primes
- See also https://www.daemonology.net/papers/fft.pdf

• Schönhage–Strassen Transform
- Used by the GNU Multiple Precision Arithmetic Library
- Used by FLINT

• Roll your own efficient Transform
- Ask a friendly computational mathematician for advice

65

Image Credit: WikiPedia  
Creative Commons License

http://creativecommons.org/licenses/by-sa/3.0/us/
https://www.ams.org/journals/mcom/1994-62-205/S0025-5718-1994-1185244-1/S0025-5718-1994-1185244-1.pdf
https://www.ams.org/journals/mcom/1994-62-205/S0025-5718-1994-1185244-1/S0025-5718-1994-1185244-1.pdf
https://www.daemonology.net/papers/fft.pdf

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

Even Better: Number Theoretic Transforms
• Avoids complex arithmetic

- Uses powers of integers modulo some prime instead of complex numbers

• Examples:
- Schönhage–Strassen algorithm

- https://tonjanee.home.xs4all.nl/SSAdescription.pdf
- GNU Multiple Precision Arithmetic Library, See: https://gmplib.org
- FLINT: Fast Library for Number Theory: http://www.flintlib.org

- Crandall’s Transform
- https://www.ams.org/journals/mcom/1994-62-205/S0025-5718-1994-1185244-1/S0025-5718-1994-1185244-1.pdf
- https://www.daemonology.net/papers/fft.pdf

- Fürer's algorithm
- Anindya De, Chandan Saha, Piyush Kurur and Ramprasad Saptharishi gave a similar algorithm that relies on

modular arithmetic
- Symposium on Theory of Computation (STOC) 2008, see https://arxiv.org/abs/0801.1416

• A good primer on Number Theoretic Transform Multiplication:
- https://tonjanee.home.xs4all.nl/SSAdescription.pdf

66

http://creativecommons.org/licenses/by-sa/3.0/us/
https://tonjanee.home.xs4all.nl/SSAdescription.pdf
https://gmplib.org
http://www.flintlib.org
https://www.ams.org/journals/mcom/1994-62-205/S0025-5718-1994-1185244-1/S0025-5718-1994-1185244-1.pdf
https://www.daemonology.net/papers/fft.pdf
http://en.wikipedia.org/wiki/Modular_arithmetic
https://arxiv.org/abs/0801.1416
https://tonjanee.home.xs4all.nl/SSAdescription.pdf

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

Number Theoretic Transform Multiply Example
• Number-theoretic transforms in the integers modulo 337 are used,

selecting 85 as an 8th root of unity

• Base 10 is used in place of base 2w for illustrative purposes

67

Image Credit: Wikipedia  
Creative Commons License

http://creativecommons.org/licenses/by-sa/3.0/us/
http://en.wikipedia.org/wiki/Number-theoretic_transform

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

Mersenne Test Revisited
• Start with a table of M(p) candidates (where p is prime)

• Look for small factors, tossing out those with factors that are not prime
- Until the rate of tossing out candidates is slower than Lucas-Lehmer test rate

• For each M(p) remaining, perform the Lucas-Lehmer test
- U2 = 4 and Ui+1 ≡ Ui2 - 2 mod M(p) until Up is computed

- Pad Ux with leading 0’s (at least p bits, more if required by Transform size)
- Transform
- Square each point
- Inverse Transform
- Divide real parts of points by point count and round to integers
- Propagate carries
- Subtract 2
- Mod M(p) using “shift and add” method

- If Up ≡ 0 then M(p) is prime, otherwise it is not prime
68

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

EFF Cooperative Computing Awards
• $50 000 - prime number with at least 1 000 000 decimal digits

- Awarded 2000 April 2

• $100 000 - prime number with at least 10 000 000 decimal digits
- Awarded 2009 October 22

• $150 000 - prime number with at least 100 000 000 decimal digits
- Unclaimed as of 2022 Apr 25

• $250 000 - prime number with at least 1 000 000 000 decimal digits
- Unclaimed as of 2022 Apr 25

- BTW: Landon is on the EFF Cooperative Computing Award Advisory Board
- And therefore Landon is NOT eligible for an award
- Because Landon is an advisor, he will NOT give private advice to individuals seeking large primes
- Landon does give public classes / lectures where the content + Q&A are open to anyone attending

69

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

EFF Cooperative Computing Awards II
• Funds donated by an anonymous donor to EFF

• Official Rules:
- https://www.eff.org/awards/coop/rules
• See also: https://www.eff.org/awards/coop/faq

- Rules designed by Landon Curt Noll
- See https://www.eff.org/awards/coop/primeclaim-43112609 for a valid claim

• Rule 4F: You must publish your proof in a refereed academic journal!
- Your claim must include a citation and abstract of a published paper that announces

the discovery and outlines the proof of primality. The cited paper must be published
in a refereed academic journal with a peer review process that is approved by EFF.

• EFF Cooperative Computing Award Advisory Board
- Landon Curt Noll (Chair), Simon Cooper, Chris K. Caldwell
- Advisory Board members are not eligible to win an award

70

http://creativecommons.org/licenses/by-sa/3.0/us/
https://www.eff.org/awards/coop/rules
https://www.eff.org/awards/coop/faq
https://www.eff.org/awards/coop/primeclaim-43112609
http://www.isthe.com/chongo/index.html
http://www.sfik.com/sc
http://www.utm.edu/~caldwell

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

www.isthe.com/chongo/tech/math/prime/prime-tutorial.pdf
Questions for Part 1
• 1) Was M(4253) ever the largest known prime?

- Hint: See slide 30

• 2) How do we know that 21000000000-1 is not prime?
- Hint: See slide 29

• 3) Should one try to factor M(p) before running the Lucas-Lehmer test?
- Hint: think about when p is a large prime AND see slide 41

• 4) If a Lucas-Lehmer test of M(p) using Classical Squaring takes 1 hour,
 how long would it take to test M(x) where x is about 100*p?

- Hint: See slides 40 & 41

• 5) If it took GIMPS 12 days to prove M(82589933) is prime, how long should it take
 them to test a Mersenne prime just large enough to claim the $150000 award?

- Hint: M(332192831) has 100 000 007 digits
- Hint: See slides 49, 65, 66 [[NOTE: M(332192831) is likely not prime]] [[NOTE: They used Transforms to Square]]

• 6) Prove that M(7) = 27-1 = 127 is prime using the Lucas-Lehmer test
- Hint: See slides 18, 19, 27, 28

71

Image Credit:
Flickr user bitzcelt

Creative Commons License

http://creativecommons.org/licenses/by-sa/3.0/us/
http://www.isthe.com/chongo/tech/math/prime/prime-tutorial.pdf

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

Part 2 - Large Riesel Primes Faster
• 231-1: Riesel Test: Searching sideways

• 261-1: Pre-screening Riesel test candidates

• 289-1: Multiply+Add in Linear Time

• 2127-1: Final Words and Some Encouragement

• 2521-1: Resources

72

Image Credit:
Flickr user NguyenDai 
Creative Commons License

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

231-1: Riesel Test: Searching sideways
• While the Lucas-Lehmer test is the most efficient proof of primality known ...
•… It is not the most efficient method to find a new largest known prime!

• Why? Well …

• Mersenne Primes are rare
- Only 47 out of 43112609 Mersenne Numbers are prime

- And even these odds are skewed (too good to be true), because of the pile of small Mersenne Primes
- Only 7 of the 29260728 Mersenne numbers that are between 1 million to 10 million decimal digits in size, are prime

- As p grows, Mersenne Prime M(p) get even more rare

• As p gets larger, the Lucas-Lehmer test with the best multiply worse than:
- O(p2 ln p)
- Worse still, numbers may grow large with respect to memory cache

- Busting the cache slows down the code

- The length of time to test will likely exceed the MTBF and MTBE
- Mean Time Before Failure and Mean Time Before Error

- You must verify (recheck your test) and have someone else independently verify (3rd test)
- So plan on the time to test the number at least 3 times!

- The GIMPS test for the 2018 largest known prime took 12 days
73

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

Advantages of Searching for h*2n-1 Primes
• Riesel test for h*2n-1 is almost as efficient as Lucas-Lehmer test for 2p-1

- Riesel test is about 10% slower than Lucas-Lehmer
- When h is small enough ... but not too small

- Test is very similar to Lucas-Lehmer so many of the performance tricks apply

• Testing h*2n-1 grows as n grows - Avoid the exponential wall (go sideways)
- Solution: pick a fixed value n and change only the value of h

- Use odd values of h < 2n (if h in even, divide by 2 and increase n until h is odd)

- A practical bound for h is: 2*n < h < 16*n

- Better still keep 2*n < h < single precision unsigned integer (on a 64-bit machine, this might be 232 or 264)

- N may be selected to optimize the algorithm used to square large integers

• Pre-screening can eliminate >98.5% of candidates

• When 2*n < h < 2n primes of the form h*2n-1 are not rare like Mersenne Primes
- They tend appear about as often as your average prime that is about the same size

- Odds that h*2n-1 is prime when 2*n < h < 2n is about 1 in 2*ln(h*2n-1)
- You can “guesstimate” the amount of time it will take to find a large prime

74

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

Mersenne Primes Dethroned
• 1989: 391581 * 2216193-1 65087 digits Amdahl 6 using the Amdahl 1200

- Only 37 digits larger than M(216091) that was found in 1985
- “Just a fart larger ” - Dr. Shanks

- BTW: The number we tested was really 783162 * 2216192-1

• Amdahl 6 team:
- Landon Curt Noll, Gene Smith, Sergio Zarantonello,

John Brown, Bodo Parady, Joel Smith

• Did not use the Lucas-Lehmer Test

• Squared numbers using Transforms
- First use for testing non-Mersenne primes
- First efficient use for small 1000 digit tests

75

Image Credit:
Mrs. Zarantonello

http://creativecommons.org/licenses/by-sa/3.0/us/
http://primes.utm.edu/bios/page.php?lastname=Noll
http://primes.utm.edu/bios/page.php?lastname=Smith_G
http://primes.utm.edu/bios/page.php?lastname=Zarantonello
http://primes.utm.edu/bios/page.php?lastname=Brown
http://primes.utm.edu/bios/page.php?lastname=Parady
http://primes.utm.edu/bios/page.php?lastname=Smith_J

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

Riesel Test for h*2n-1 is Lucas-Lehmer like
• h*2n-1 is prime if and only if odd h < 2n,

h*2n-1 not divisible by 3, and
Un ≡ 0 mod h*2n-1

- If h in even, divide by 2 and increase n until h is odd
- U2 = V(h)

- We will talk about how to calculate V(h) in the slides that follow

- Ux+1 ≡ Ux2 - 2 mod h*2n-1

• Differences from the Lucas-Lehmer test
- Need to verify h*2n-1 is not a multiple of 3
- The power of 2 does not have to be prime

- We calculate mod h*2n-1 not mod 2n-1

- U2 depends on V(h) and is not always 4

76

7 is prime
Image Credit:

Wikipedia

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

Example code for Riesel Test
• Example code for Riesel Test:

- http://www.isthe.com/chongo/src/calc/lucas-calc
- Source code contains lots and lots of comments with lots of references to papers - worth reading!
- NOTE: Only use this code as a guide, calc by itself is not intended to find a new largest known prime
- Written in Calc - A C-like multi-precision calculator: http://www.isthe.com/chongo/tech/comp/calc/

- https://github.com/arcetri/gmprime
- Written in C
- Implements the algorithm of http://www.isthe.com/chongo/src/calc/lucas-calc
- A potential code base from which to start optimization
- Uses GMU MP
- Extensive test code
- Had debugging options

- https://github.com/arcetri/goprime
- A potential code base from which to start optimization
- Once version written in go benchmarks several square methods
- One version written in C that uses flint: http://www.flintlib.org

- http://jpenne.free.fr/index2.html
- LLR code implements Riesel test

77

The Ulan spiral
Image Credit:

Wikipedia

http://creativecommons.org/licenses/by-sa/3.0/us/
http://www.isthe.com/chongo/src/calc/lucas-calc
http://www.isthe.com/chongo/tech/comp/calc/
https://github.com/arcetri/gmprime
http://www.isthe.com/chongo/src/calc/lucas-calc
https://github.com/arcetri/goprime
http://www.flintlib.org
http://jpenne.free.fr/index2.html

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

Prior to finding U(2) - Riesel test setup
• Pretest: Verify h* 2n-1 is not a multiple of 3

- Do not test if (h ≡ 1 mod 3 AND n is even) NOR
 if (h ≡ 2 mod 3 AND n is odd)
- This pretest is mandatory when h is not a multiple of 3

- No need to test h*2n-1 because in this case 3 is a factor!

• Test only odd h
- Only test odd h, ignore even h

- One can always divide h by 2 and add one to 1 until h becomes odd

• Riesel test requires h < 2n

- We recommend using odd h in this range: 2*n < h < 16*n

78

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

Calculating U(2) when h is not a multiple of 3
• Pretest: Verify that h*2n-1 is not a multiple of 3

- Do not test if (h ≡ 1 mod 3 AND n is even) NOR
 if (h ≡ 2 mod 3 AND n is odd)

• Note that we are considering only the case when h is odd
- For even h, divide h by 2 and add one to 1 until h becomes odd

• Start with:
- V(0) = 2
- V(1) = 4 (NOTE: V(1) = 4 always works when h is not multiple of 3)

• Compute V(h) using these recursion formulas:
- V(i+1) = [V(1)*V(i) - V(i-1)] mod h*2n-1

- V(2*i) = [V(i)2 - 2] mod h*2n-1

- V(2*i+1) = [V(i)*V(i+1) - V(1)] mod h*2n-1

• U(2) = V(h)
79

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

Calculating U(2) when h is a multiple of 3
• Pretest: Verify that h*2n-1 is not a multiple of 3

- Do not test if (h ≡ 1 mod 3 AND n is even) NOR
 if (h ≡ 2 mod 3 AND n is odd)

• Note that we are considering only the case when h is odd
- For even h, divide h by 2 and add one to 1 until h becomes odd

• Start with:
- V(0) = 2

- V(1) = X > 2 where Jacobi(X-2, h*2n-1) = 1

 and where Jacobi(X+2, h*2n-1) = -1
- Jacobi(a,b) is the Jacobi Symbol

- See “A note on primality tests for N = h*2n-1”
An excellent 5 page paper by Öystein J. Rödseth,
Department of Mathematics, University of Bergen,
BIT Numerical Mathematics. 34 (3): 451–454.
https://link.springer.com/article/10.1007/BF01935653

• Compute V(h) using these recursion formulas:
- V(i+1) = [V(1)*V(i) - V(i-1)] mod h*2n-1

- V(2*i) = [V(i)2 - 2] mod h*2n-1

- V(2*i+1) = [V(i)*V(i+1) - V(1)] mod h*2n-1

• U(2) = V(h)
80

Image Credit:
Copyright © Sidney Harris 
www.sciencecartoonsplus.com

http://creativecommons.org/licenses/by-sa/3.0/us/
https://link.springer.com/article/10.1007/BF01935653
http://www.sciencecartoonsplus.com

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

Calculating the Jacobi symbol is easy
• Pre-condition: b must be an odd (i.e., b ≡ 1 mod 2) and 0 < a < b

• Jacobi(a,b) {
 j := 1
 while (a is not 0) {
 while (a is even) {
 a := a / 2
 if ((b ≡ 3 mod 8) or (b ≡ 5 mod 8))
 j := - j
 }
 temp := a; a := b; b := temp // exchange a and b
 if ((a ≡ 3 mod 4) and (b ≡ 3 mod 4))
 j := - j
 a := a mod b
 }
 if (b is 1)
 return j
 else
 return 0
}

81

Carl Gustav Jacob Jacobi
Image Credit: Wikipedia

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

• Try these values of X in the following order:
- 3, 5, 9, 11, 15, 17, 21, 27, 29, 35, 39, 41, 45, 51, 57, 59, 65, 69, 81

- Search the list for X where Jacobi(X-2, h*2n-1) = 1 and Jacobi(X+2, h*2n-1) = -1

Set V(1) to the first value of X that satisfies those 2 Jacobi equations

- Fewer than 1 out of 1000000 cases, when h is an odd multiple of 3, are not satisfied by the above list

• If none of those values work for V(1), test odd values of X starting at 83
- Find first odd X ≥ 83 where Jacobi(X-2, h*2n-1) = 1 and Jacobi(X+2, h*2n-1) = -1

• An implementation of this method using C & GNU MP:
- https://github.com/arcetri/gmprime

How to find V(1) when h is a multiple of 3

82

Image Credit:
Flickr user amandabhslater 

Creative Commons License

http://creativecommons.org/licenses/by-sa/3.0/us/
https://github.com/arcetri/gmprime

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

How to find V(1) when h is NOT a multiple of 3
• To speed up generating U(2) = V(h), we need to find a small V(1)

• If h is odd and not a multiple of 3, and
if Jacobi(1, h*2n-1) = 1 and Jacobi(5, h*2n-1) = -1 then

- V(1) = 3

• else
- V(1) = 4

• 40% of h*2n-1 values can use a V(1) value of 3
- 4 always works for h*2n-1 when h is not a multiple of 3

• An implementation of this method using C & GNU MP:
- https://github.com/arcetri/gmprime

83

Image Credit:
Landon Curt Noll

http://creativecommons.org/licenses/by-sa/3.0/us/
https://github.com/arcetri/gmprime

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

Riesel Test example: 7*25-1 = 223
• 7*25-1 is prime if and only if 7 < 25 and U5 ≡ 0 mod 7*25-1

- V(0) = 2
- V(1) = 3 (because Jacobi(1,223) == 1 and Jacobi(5,223) == -1, we could also use 4 because h==7 is not a multiple of 3)

- V(i+1) = [V(1)*V(i) - V(i-1)] mod h*2n-1

- V(2*i) = [V(i)2 - 2] mod h*2n-1

- V(2*i+1) = [V(i)*V(i+1) - V(1)] mod h*2n-1

• Calculating V(7) from V(0) and V(1)
- V(0) = 2
- V(1) = 3 (because Jacobi(1,223) == 1 and Jacobi(5,223) == -1, see the previous slide)

- V(2) = [V[1]2 - 2] mod 223 = 7
- V(3) = [V[1]*V[2] - V[1]] mod 223 = 18
- V(4) = [V[2]2 - 2] mod 223 = 47
- V(5) = [V(1)*V(4) - V(3)] mod 223 = 123
- V(6) = [V(1)*V(5) - V(4)] mod 223 = 99
- V(7) = [V(1)*V(6) - V(5)] mod 223 = 174

84

Image Credit:
Landon Curt Noll

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

Riesel Test example: 7*25-1 = 223
• 7*25-1 is prime if and only if 7 < 25 and U5 ≡ 0 mod 7*25-1

- U2 = V(h)

- Ux+1 ≡ Ux2 - 2 mod h*2n-1

• Riesel test: 7*25-1 = 223

• U2 = V(7) = 174

• U3 = 1742 - 2 = 30274 mod 223 ≡ 169

• U4 = 1692 - 2 = 28559 mod 223 ≡ 15

• U5 = 152 - 2 = 223 mod 223 ≡ 0

• Because U5 ≡ 0 mod 223 we know that 7*25-1 = 223 is prime

85

Image Credit:
Landon Curt Noll

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

Calculating mod h*2n-1
• Very similar to the “shift and add” method for mod 2n-1

• Split the value into two chunks:

• Then Ux2-2 mod h*2n-1 ≡ int(J/h) + (J mod h)*2n + K

• If int(J/h) + (J mod h)*2n + K > h*2n-1 then repeat the above

• Mod h*2n-1 can be done in O(d) steps

86

KJUx2-2 =
n bits long

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

Keep h single precision, but not too single!
• Calculating mod h*2n-1 requires computing: int(J/h) + (J mod h)*2n + K

- K is the first n bits, J is everything beyond the first n bits:

• Calculating int(J/h) and (J mod h) takes more time for double precision h
- keep h < 263 (when testing on a 64-bit machine)

• Do NOT make h too small!
- primes of the form h*2n-1 tend to be rare when h is tiny

- Keep 2*n < h

- But not too much greater than 2*n to avoid double precision mod speed issues
- For example, keep: 2*n < h < 16*n

87

KJUx2-2 =
n bits long

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

261-1: Pre-screening Riesel Test Candidates
• Eliminate h*2n-1 values that are a multiple of small primes

- Avoid testing large values are “obviously” not prime

• We will use sieving techniques to quickly find multiples of small primes

• In order to understand these sieving techniques ...
- Let first look in detail, of how to use the “Sieve of Eratosthenes” to find tiny primes
- Then we will apply these ideas to quickly eliminate Riesel candidates that are

multiple or small primes

88

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

• Sieve the integers
- Given the integers:
• 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 ...

- Ignore 1 (we define it as not prime)
• 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 ...

- The next unmarked number is prime .. 2
• 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 ...

- .. cancel every 2nd value after that
• 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 ...

- The next value remaining, 3, is prime so mark it and cancel every 3rd value after that
• 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 ...

- And the same for 5
• 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 ...

- And 7 NOTE: Our list ends before 72 = 49, so the mark remaining values as
prime

• 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 ...

The Sieve of Eratosthenes

89

X X X X X X X X X X X X X X X

X X X X X X X X X

X X X X X

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

• We can sieve over a segment of that integers that does not start with 1
- Consider this list:
• 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 ...

- Start with 1st prime: 2, find the first multiple of 2, cancel it & every 2nd value
• 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 ...

- 2nd prime: 3, find the first multiple of 3, cancel it & every 3rd value
• 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 ...
- 3rd prime: 5, find the first multiple of 5, cancel it & every 5th value
• 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 ...
- 4th prime: 7, find the first multiple of 7, cancel it & every 7th value
• 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 ...
- 5th prime 11, find the first multiple of 11, cancel it & every 11th value
• 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 ...

- Because our list ends before 132 = 169, the rest are prime
• 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 ...

When the List does NOT Start with 1

90

X X X X X X X X X X X

X X X X X X X

X X X X X

X X X

X X

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

Skipping the Even Numbers While Sieving
• When not starting at 1, we can ignore the even numbers and it still works

- Consider this list:
• 101 103 105 107 109 111 113 115 117 119 121 123 125 127 129 131 133 135 137 139 141 ...

- No need to eliminate 2’s since the values are all odd
- Start with 3, find the first multiple of 3, cancel it & every 3rd
• 101 103 105 107 109 111 113 115 117 119 121 123 125 127 129 131 133 135 137 139 141 ...

- 5: find the first multiple of 5, cancel it & every 5th value
• 101 103 105 107 109 111 113 115 117 119 121 123 125 127 129 131 133 135 137 139 141 ...

- 7: find the first multiple of 7, cancel it & every 7th value
• 101 103 105 107 109 111 113 115 117 119 121 123 125 127 129 131 133 135 137 139 141 ...

- 11: find the first multiple of 11, cancel it & every 11th value
• 101 103 105 107 109 111 113 115 117 119 121 123 125 127 129 131 133 135 137 139 141 ...

- Because our list ends before 132 = 169, the rest are prime
• 101 103 105 107 109 111 113 115 117 119 121 123 125 127 129 131 133 135 137 139 141 ...

91

X X X X X X X

X X X X

X X X

X

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

• Consider the following arithmetic sequence
- We will use the sequence 10*x + 1
• 101 111 121 131 141 151 161 171 181 191 201 211 221 231 241 251 261 271 281 291 301 ...

- None of the values are multiples of 2, so 3: find the first multiple of 3, cancel every 3rd
• 101 111 121 131 141 151 161 171 181 191 201 211 221 231 241 251 261 271 281 291 301 ...

- None of the values are multiples of 5, so 7: find the first multiple of 7, cancel every 7th
• 101 111 121 131 141 151 161 171 181 191 201 211 221 231 241 251 261 271 281 291 301 ...

- 11: find the first multiple of 11, cancel it & every 11th value
• 101 111 121 131 141 151 161 171 181 191 201 211 221 231 241 251 261 271 281 291 301 ...

- 13: find the first multiple of 13, cancel it & every 13th value
• 101 111 121 131 141 151 161 171 181 191 201 211 221 231 241 251 261 271 281 291 301 ...

- 17: find the first multiple of 17, cancel it & every 17th value
• 101 111 121 131 141 151 161 171 181 191 201 211 221 231 241 251 261 271 281 291 301 ...

- Because our list ends before 192 = 361, the rest are prime
• 101 111 121 131 141 151 161 171 181 191 201 211 221 231 241 251 261 271 281 291 301 ...

Sieving Over an Arithmetic Sequence

92

X X X X X X X

X X X

X X

X

X

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

Sieving Over a Sequence of Riesel Sequence
• For a given n, as h increases, h*2n-1 is an arithmetic sequence

- Consider h*25-1 for increasing h, all of which are odd so we need not sieve for 2
• 1*25-1=31 2*25-1=63 3*25-1=95 4*25-1=127 5*25-1=159 6*25-1=191 7*25-1=223 8*25-1=255 9*25-1=287

- 3: find the first multiple of 3, and then cancel every 3rd
• 1*25-1=31 2*25-1=63 3*25-1=95 4*25-1=127 5*25-1=159 6*25-1=191 7*25-1=223 8*25-1=255 9*25-1=287

- 5: find the first multiple of 5, cancel it, and then cancel every 5th value
• 1*25-1=31 2*25-1=63 3*25-1=95 4*25-1=127 5*25-1=159 6*25-1=191 7*25-1=223 8*25-1=255 9*25-1=287

- 7: find the first multiple of 7, cancel it, and then cancel every 7th value
• 1*25-1=31 2*25-1=63 3*25-1=95 4*25-1=127 5*25-1=159 6*25-1=191 7*25-1=223 8*25-1=255 9*25-1=287

- 11: find the first multiple of 11 .. there is none in this list, so skip it
- 13: find the first multiple of 13 .. there is none in this list, so skip it

- Because our list ends before 172 = 289, the rest are prime

• Sieving a Riesel Sequence is not useful for finding a large prime
- It helps quickly identify Riesel numbers that are NOT prime so we won’t waste time on them

• Now let return to the quickly eliminating multiples of small primes ...
93

X X

X

X

X

X

X

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

Pre-screening Riesel Candidates by Sieving
• Given an arithmetic sequence of Riesel numbers: h*2n-1

- for 2*n < h < 16*n

• Our list (an arithmetic sequence) to candidates becomes:
- (2n+1)*2n-1 (2n+2)*2n-1 (2n+3)*2n-1 (2n+4)*2n-1 … (16n-1)*2n-1

• Build an array of bytes: c[0] c[1] .. c[2*n] c[2*n+1] .. c[16*n-1]
- Where c[h] represents the candidate: h*2n-1
- Initially set c[0] .. c[2*n] = 0 as these values have too small of an h to be useful

- c[0] == 0*2n-1 == 0 does not need to be primality tested

- c[1] == 1*2n-1 == a mersenne number, might need to be primality tested, but is unlikely to be prime and isn’t when n is not prime

- Set c[2*n+1] .. c[16*n-1] = 1
- These Riesel candidates have a 2*n < h < 16*n

• For each test factor Q, find the first element, c[X], that is a multiple of Q
- See the next slide for how we find the first element, X*2n-1, that is a multiple of Q

• Clear c[X] and clear every Q-th element just like we did those sieve examples
- for (y=X; y < 16*n; y += Q) { c[y] = 0; } /* these values are multiples of Q and therefore not prime */

94

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

How to Find the First Element that is Multiple of Q
• How to find the first X where X*2n-1 is a multiple Q

- We assume that Q is odd
- Since X*2n-1 is never even, one never needs to consider even values of Q

• Let R = 2n mod Q
- See the next 3 slides for how to compute R

• Let S = Modular multiplicative inverse of R mod Q
- https://en.wikipedia.org/wiki/Modular_multiplicative_inverse
- https://rosettacode.org/wiki/Modular_inverse#C
- See 4 slides down for how we compute the modular multiplicative inverse

• Then the first h where h*2n-1 is a multiple Q is: S*2n-1
- Sieve out c[S], c[S+Q], c[S+(2*Q)], c[S+(3*Q)], c[S+(4*Q)], c[S+(5*Q)], …

- These are all multiples of Q and therefore cannot be prime
95

http://creativecommons.org/licenses/by-sa/3.0/us/
https://en.wikipedia.org/wiki/Modular_multiplicative_inverse
https://rosettacode.org/wiki/Modular_inverse#C

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

How to Quickly Compute R = 2n mod Q
• One can quickly compute R = 2n mod Q by modular exponentiation

• Observe that:
- If y = 2x mod Q

- then 2(2x) mod Q = y2 mod Q (the 0-bit case)

- and 2(2x+1) mod Q = 2*y2 mod Q (the 1-bit case)

96

Image Credit: Wikipedia  
Creative Commons License

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

Minimize the 1-bits in n for Speed’s Sake!
• Note that computing R = 2n mod Q is faster

when n, in binary, has fewer 1 bits

• For each 0-bit in n:
- square and mod

• For each 1-bit in n:
- square, multiply by 2, then mod

• It is best to minimize the number of 1-bits in n
- Choose an n that is a small multiple of a power of 2

- Such values of n have lots of 0-bits at the bottom

97

Image Credit:
Flickr user AceFrenzy 

Creative Commons License

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

The Modular Exponent Trick - Small Example
• Compute R = 2117 mod 3391

- In the example, we are pre-screening candidates of the form h*2n-1, where n = 117
- We show how to compute R = 2117 mod Q, where Q = 3391 is an example test factor

• The exponent of 2, in binary, is 117: 1110101, we start with some leading bits
- We start with on the leading 3 bits just for purposes of illustration
- On CPUs with w-bit words, you should start with the w leading bits

• 27: Start with the leading bits where we can raise 2 to that power
- Raise 2 to the leading 3 bits and mod: 27 mod 3391 ≡ 128

• 214: Next bit in the exponent, 1110101 is 0:
- 0-bit: square and mod: 1282 mod 3391 ≡ 2820

• 229: Next bit in the exponent, 1110101 is 1:
- 1-bit: square, multiply by 2, then mod: 2*28202 mod 3391 ≡ 1010

• 258: Next bit in the exponent, 1110101 is 0:
- 0-bit: square and mod: 10102 mod 3391 ≡ 2800

• 2117: Next bit in the exponent, 1110101 is 1:
- 1-bit: square, multiply by 2, then mod: 2*28002 mod 3391 ≡ 16

• Thus R = 2117 mod 3391 ≡ 16

• While computing R = 2n mod Q, the largest value encountered is < 2*Q2

98

Image Credit:
Flickr user anton.kovalyov

Creative Commons License

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

How to find the Modular Multiplicative Inverse of
R mod Q
• /*
 * mul_inv - Modular Multiplicative Inverse
 *
 * given:
 * R an integer
 * Q an integer > 0 and where gcd(R,Q) = 1
 * (i.e., R and Q have no common prime factors)
 *
 * returns:
 * S = Modular Multiplicative Inverse of R mod Q
 */
int
mul_inv(int R, int Q)
{
 int Q0 = Q, t, q;
 int x0 = 0, S = 1;
 if (Q == 1) return 1;
 while (R > 1) {
 q = R / Q;
 t = Q; Q = R % Q; R = t;
 t = x0; x0 = S - q * x0; S = t;
 }
 if (S < 0) S += Q0;
 return S;
}

99

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

How Deep Should we Sieve? A Practical Answer
• Sieve Riesel candidates until the time between sieve eliminations becomes

longer than the time it takes to run a Riesel Test
- When it takes longer for the sieve to turn a c[y] from 1 to 0, just do Riesel tests

• From experience: Sieve screening can eliminate >98.5% of candidates

• NOTE: If you happen to sieve for a small non-prime, you just waste time
- You simply just won’t eliminate c[y] values that haven't already been eliminated

• However the work to determine of Q is prime may
waste too much time! So how much work is OK?

- Start sieving array of odd Q values while simultaneously
sieving Riesel candidates with Q’s that remain standing

- When the time it takes to eliminate an odd Q is longer
than the time to do a single sieve of Riesel candidates,
stop sieving Q values and just Sieve Riesel candidates

100

Image Credit:
Flickr user Marcin Wichary

Creative Commons License

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

Riesel Test Revisited
• Pick large n and start with a table of h*2n-1 where 2*n < h < limit

- Where limit is less than the word size (say h < 232 or h < 264)
- Start with some practical range for h, say: 2*n < h < 16*n

• Look for small factors by sieving, tossing out those with factors of small primes

• For each h*2n-1 remaining, perform the Riesel test (almost as fast as the Lucas-Lehmer)
- U2 = V(h) and Ux+1 ≡ Ux2 - 2 mod h*2n-1 until Un is computed

- Pad Ux with leading 0’s (at least p bits, more if required by Transform size)
- Transform
- Square each point
- Inverse Transform
- Round to integers and/or normalize as needed
- Propagate carries
- Subtract 2

- Mod h*2n-1 using a slightly more involved “shift and add” method

- If Up ≡ 0 then h*2n-1 is prime, otherwise it is not prime
101

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

Cray Records Return - Amdahl 6 lesson ignored
• 1992: M(756839) 227 832 digits Slowinski & Gage using the Cray 2
• 1994: M(859433) 258 716 digits Slowinski & Gage using the Cray C90
• 1995: M(1257787) 378 632 digits Slowinski & Gage using the Cray T94

102

Slowinski, Cray T94, Gage

Image Credit:
Chris Caldwell

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

GIMPS Record Era - Just testing 2n-1
• Great Internet Mersenne Prime Search - Testing only Mersenne numbers (test 2n -1 only, not h*2n -1)

- https://www.mersenne.org
- Woltman, Kurowski, et al. using Crandall’s Transform Square Algorithm

• 1996: M(1398269) 420 921 digits GIMPS + Armengaud

• 1997: M(2976221) 895 932 digits GIMPS + Spence

• 1998: M(3021377) 909 526 digits GIMPS + Clarkson

• 1999: M(6972593) 2 098 960 digits GIMPS + Hajratwala
- $50 000 Cooperative Computing Award winner - 1st known million digit prime

• 2001: M(13466917) 4 053 946 digits GIMPS + Cameron

• 2003: M(20996011) 6 320 430 digits GIMPS + Shafer

• 2004: M(24036583) 7 235 733 digits GIMPS + Findley

• 2005: M(25964951) 7 816 230 digits GIMPS + Nowak

• 2005: M(30402457) 9 152 052 digits GIMPS + Cooper *

• 2006: M(32582657) 9 808 358 digits GIMPS + Cooper *

• 2008: M(43112609) 12 978 189 digits GIMPS + Smith
- $100 000 Cooperative Computing Award winner - 1st known 10 million digit prime

• 2013: M(57885161) 17 425 170 digits GIMPS + Cooper *

• 2016: M(74207281) 22 338 618 digits GIMPS + Cooper *

• 2017: M(77232917) 23 249 425 digits GIMPS + Pace

• 2018: M(82589933) 24 862 048 digits GIMPS + Laroche
103

Image Credit:
Flickr user QualityFrog 
Creative Commons License

* no relation to Simon :)

http://creativecommons.org/licenses/by-sa/3.0/us/
https://www.mersenne.org

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

To be Fair to GIMPS
• GIMPS stands for Great Internet Mersenne Prime Search

• GIMPS is about searching for Mersenne Primes Only

• While testing Riesel numbers h*2n-1 may be faster ...
- Riesel testing is outside of their “charter” / purpose

104

Image Credit:
www.mersenne.org

http://creativecommons.org/licenses/by-sa/3.0/us/
http://www.mersenne.org

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

289-1: Multiply+Add in Linear Time
• You can perform a n-bit multiply AND an n-bit add in 2*n clock cycles

- If you have ⎡n/3⎤simple 11-bit state machines

- ⎡n/3⎤mean n/3 rounded up to the next integer

- See Knuth: Art of Computer Programming, Vol. 2, Section 4.3.3 E

• Calculates u*v + q = a
- The machine does a multiply and an add at the same time

• Can calculate Un2 - 2 in 2*n clock cycles
- using ⎡n/3⎤simple 11-bit state machines

• Hardware can do the slightly more involved “shift and add” in parallel
- With the machine that is computing Ux2 - 2

• Hardware can compute Un+1 in linear time!
105

Image Credit:
Dr. George Porter, UCSD

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

11 bits of State in Each Machine
• Each state machine as 11 bits of state:

- c, x0, y0, x1, y1, x, y, z0, z1, z2
• All binary bits except for c which is a 2-bit binary value

• 0th state machine is special:
- 3, 0, 0, 0, 0, u(t), v(t), 0, 0, q(t)
- The input bits are feed into x—>u(t),

 y—>v(t),
 z2—>q(t)

- c is always 3, the other bits are always 0

• 1st state machine’s z0 holds the answers at time t ≥ 1:
- That z0 bit, at time t+1 holds bit t of the answer

- answer bit of: a = u * v + q

106

c x y
x0 y0
x1 y1

z0 z1 z2

3u(t)v(t)
0 0
0 0

0 0 q(t)

c x y
x0 y0
x1 y1

z0 z1 z2

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

Build an Array of State Machines
• Assume a linear array of state machines S[0], S[1], S[2], …

- If u, v, q are n-bits you need S[0] thru S[int(n/3)+1]
- Initialize all state machine bits except S[0] are set to 0

• On each clock all state machines except the 0th:
- Receive 1 bit from the right, 3 bits from the left, and copy over 2 bits from the left

• At clock t, feed in bit t of the input (u, v, q) into the 0th state machine’s x, y, z2
- When after the last input bit is feed, feed 0 bits

• Bit t of the answer is found in z0 of the 1st state machine at clock t+1
107

. . .
3u(t)v(t)
0 0
0 0

0 0 q(t)

c x y
x0 y0
x1 y1

z0 z1 z2

c x y
x0 y0
x1 y1

z0 z1 z2

c x y
x0 y0
x1 y1

z0 z1 z2

c x y
x0 y0
x1 y1

z0 z1 z2

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

Simple State Machine Rules
These apply to all except left most machine
• On each clock, state machines compute (z2, z1, z0):

- Obtain z0 from right neighbor (call it z0Rr)
- Obtain x, y, z2 from left neighbor (call them xL, yL, z2L)
- If c == 0, (z2,z1,z0) = z0R + z1 + z2L + (xL & yL)
- If c == 1, (z2,z1,z0) = z0R + z1 + z2L + (x0 & yL) + (xL & y0)
- If c == 2, (z2,z1,z0) = z0R + z1 + z2L + (x0 & yL) + (xL & y0) + (x1 & y1)
- If c == 3, (z2,z1,z0) = z0R + z1 + z2L + (x0 & yL) + (xL & y0) + (x1 & y) + (x & y1)
• & means logical AND and + means add bits together into the 3 bit value (z2, z1, z0)

• On each clock, state machines copy from the left depending on c:
- If c == 0, then copy x0,y0 from left neighbor into x0,y0
- If c == 1, then copy x1,y1 from left neighbor into x1,y1
- If c > 1, then copy x, y from left neighbor into x ,y

• On each clock, state machine increment c until it reaches 3:
- c = minimum of (c+1, 3)

- c is a 2-bit value
108

Image Credit:
Flickr user 37prime 

Creative Commons License

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

27.6 Million State Machine Array @ 100 GHz
• Multiply two 82.8 million bit numbers & add a 82.8 million bit digit number

- In 0.00166 seconds!

• For Lucas-Lehmer or Riesel test:
- Compute u*u + (-2)

- Make u(t) = v(t) for all clocks
- Add in the 2’s compliment of -2

- A simple front-end circuit can perform the “shift & add” for the mod

• Current record (as of 2019 Apr 16) is a 82 589 933 digit prime took 12 days
- Used GIMPS code from http://www.mersenne.org
- PC with an Intel i5-6600 CPU

• At 100 GHz, this machine could Riesel test a record sized prime in 37.9 hours!
- More than 7.6 times faster per test!
- It is certainly possible to build an ASIC with an even faster internal clock
- Method increases linearly O(n) as the exponent grows

- O(n) is MUCH better than O(n ln n), so for larger tests, this method will eventually become even faster than FFTs in software!

• Of course, you would need multiple units to be competitive with GIMPS
109

Image Credit:
Flickr user Quasimondo 
Creative Commons License

http://creativecommons.org/licenses/by-sa/3.0/us/
http://www.mersenne.org

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

2127-1: Final Words and Some Encouragement
• Results (and records) goes to the first to calculate CORRECTLY ...

- … not necessarily to the fastest tester

• A slow correct answer in infinitely better than a fast wrong answer!

• Compute smarter
- You do NOT need to have the fastest machine to be the first to prove primality

- My 8 world records related to prime numbers did NOT use the fastest machine

• Pre-mature optimization is the bane of a correctly
running program

- Write your comments first
- Code something that works, updating comments as needed

- Start that code running

- Then incrementally improve the comments, improve the code & retest
- Update the running code when you are confident it works

110

Image Credit:
Flickr user Kaeru 

Creative Commons License

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

Test, test and TEST!
• Don’t trust the CPU / ALU

- Put in checksums to sanity check square
- Put in checksums to sanity check mod
- 2001 Intel Celeron CPU had a Mean Time Between Errors (MTBE) of only 37 weeks!

• Don’t trust the Memory or Memory management
- Uniquely mark pages in memory

- Check for bad page fetches

• Don’t trust the system
- Checkpoint in the middle of calculations

- Restart program at last checkpoint

- Backup! Test your backups!
- Checksum code and data tables!

• Confirm all primality tests
- After a number is tested, recheck the result!

- Compare final Ux values
- Test on different hardware
- Better still, use different code to confirm test results

111

Image Credit:
Flickr user: flanker27 

Creative Commons License

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

Most CPU cycles are NOT spent primality testing
• Expect to spend 1/3 or more of CPU time eliminating test candidates

• Expect to primality test each remaining test candidate at least twice

• Expect to spend 1/4 or more of CPU time in error checking

• Typically only 25% of CPU cycles will test a new prime candidate
- ((100% - 1/3) / 2) * (1 - 1/4) = 25%

• You must verify (recheck your test) and have someone else
independently verify (3rd test)

- So plan on the time to test the number at least 3 times!

• While nothing is 100% error free:
- Q: What is “mathematical truth”? A: The pragmatic answer:

- Mathematical truth is something that the mathematical community has studied
(peer reviewed) and has been shown to be true

112

Image Credit:
Flickr user benben  

Creative Commons License

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

Find a new largest known prime (> 282589933-1)
• Pick some n a bit larger than 82589933, say n = 82837504

- If n as mostly 0 bits, the sieve (to eliminate potential candidates) goes faster
- n = 100111100000000000000000000 in binary

- Start with some practical range for h, say 165675008 < h < 1325400064
- 2*82837504 < h < 16*82837504

• Look for small factors by sieving, tossing out those with factors that are not prime
- Eliminate more than 98.5% of the candidates

- before the sieve starts to take more time to eliminate a candidate than a prime test takes to run

• For each h*282837504-1 remaining, perform the Riesel test
- U2 = V(h) and Ux+1 ≡ Ux2 - 2 mod h*282837504-1 until U82837504 is computed

- Pad Ux with leading 0’s (at least p bits, more if required by Transform size)
- Transform
- Square each point
- Inverse Transform
- Round to integers
- Propagate carries
- Subtract 2

- Mod h*2n-1 using a slightly more involved “shift and add” method

- If Up ≡ 0 then h*282837504-1 is prime, otherwise it is not prime
113

Image Credit:
Wikipedia

Creative Commons License

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

Riesel tests to find a new largest known prime
• Odds of h*282837504-1 prime ...

- where 165675008 < h < 1325400064
• where 2*82837504 < h < 16*82837504

• is about 1 in 2*ln(h*282837504-1)
- About 1 in 2*(ln(h)+(82837504*ln(2)))
• 1 in 107 569 027 for h near 114837203
• 1 in 107 569 032 for h near 114837207

• Assume sieving eliminates >98.5% of the candidates

• Expect to perform about 1 613 535 Riesel tests of h*282837504-1

114

Image Credit:
Chris Caldwell

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

Finding a new largest known prime
• Could one of us, or a team among us find a new largest known prime?

- Yes!
• Focus on correctness of coding

- Write code that runs correctly the first time
• You don’t have time to rerun!

• Focus on error correction and detection
- Don’t blindly trust hardware, firmware, operating system, system, drivers, compilers, etc.
- Consider developing a tool to test newly manufactured hardware
- Consider developing a tool that uses otherwise idle cycles

• Compute smarter
- Hardware people: Consider building a fast multiply/add circuit
- You do NOT need to use the fastest computer to gain a new world record!
- Efficient networking between compute nodes will be key!

115

Image Credit:
Flickr user: My Buffo 

Creative Commons License

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

Don’t Become Discouraged
• As Dr. Lehmer was fond of saying:

• Don’t get discouraged
- You are searching on a many-sided polygon - you just have to find the right corner

• Work in a small team
- Make use of complimentary strengths

• Write your own code where reasonable
- Have different team members check each other’s code
- When you use outside code
• Always start with the source
• Study their code, check for correctness, learn that code so well that you could write it yourself

- You might end up re-writing it once you really understand what their code does
116

“Happiness is just around the corner”

Image Credit:
Flickr user b3ni  

Creative Commons License

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

And Above All ...
• Could someone in this room find a new largest known prime?

- Yes!
• You CAN find a new largest known prime!

- Never let someone tell you, you can’t!

117

Image Credit:
Flickr user quinnums

Creative Commons License

Edson Smith (Discoverer), Simon Cooper, Landon Curt Noll

http://creativecommons.org/licenses/by-sa/3.0/us/

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

2521-1: Resources
• The Prime Pages:

- https://primes.utm.edu/
- https://primes.utm.edu/notes/by_year.html#3
- https://primes.utm.edu/prove/index.html

• Amdahl 6 method for implementing the Riesel test:
- http://www.isthe.com/chongo/src/calc/lucas-calc
- http://www.isthe.com/chongo/tech/comp/calc/index.html

• Transform resources and multiplication:
- https://tonjanee.home.xs4all.nl/SSAdescription.pdf
- http://www.flintlib.org
- http://www.fftw.org/
- https://en.wikipedia.org/wiki/Discrete_Fourier_transform#Polynomial_multiplication
- http://www.apfloat.org/ntt.html
- https://gmplib.org
- https://arxiv.org/abs/0801.1416
- https://cr.yp.to/f2mult/mateer-thesis.pdf
- https://www.ams.org/journals/mcom/1994-62-205/S0025-5718-1994-1185244-1/

S0025-5718-1994-1185244-1.pdf
- https://www.daemonology.net/papers/fft.pdf

118

Image Credit:
Flickr user mr.beaver 

Creative Commons License

http://creativecommons.org/licenses/by-sa/3.0/us/
https://primes.utm.edu
https://primes.utm.edu/notes/by_year.html#3
https://primes.utm.edu/prove/index.html
http://www.isthe.com/chongo/src/calc/lucas-calc
http://www.isthe.com/chongo/tech/comp/calc/index.html
https://tonjanee.home.xs4all.nl/SSAdescription.pdf
http://www.flintlib.org
http://www.fftw.org
https://en.wikipedia.org/wiki/Discrete_Fourier_transform#Polynomial_multiplication
http://www.apfloat.org/ntt.html
https://gmplib.org
https://arxiv.org/abs/0801.1416
https://cr.yp.to/f2mult/mateer-thesis.pdf
https://www.ams.org/journals/mcom/1994-62-205/S0025-5718-1994-1185244-1/S0025-5718-1994-1185244-1.pdf
https://www.ams.org/journals/mcom/1994-62-205/S0025-5718-1994-1185244-1/S0025-5718-1994-1185244-1.pdf
https://www.daemonology.net/papers/fft.pdf

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

2521-1: Resources II
• Riesel primality test code:

- https://github.com/arcetri/gmprime
- https://github.com/arcetri/goprime
- http://jpenne.free.fr/index2.html

• Verified primes of the form h*2n-1
- https://github.com/arcetri/verified-prime

• GIMPS:
- https://www.mersenne.org
- https://www.mersenne.org/download/

• On English names of large numbers:
- http://www.isthe.com/chongo/tech/math/number/number.html
- http://www.isthe.com/chongo/tech/math/number/howhigh.html

• Mersenne primes and the largest known Mersenne prime:
- http://www.isthe.com/chongo/tech/math/prime/mersenne.html
- http://www.isthe.com/chongo/tech/math/prime/mersenne.html#largest

• Cooperative Computing Award:
- https://www.eff.org/awards/coop
- https://www.eff.org/awards/coop/rules

• Obtain a recent edition of Knuth’s:
- The Art of Computer Programming, Volume 2, Semi-Numerical Algorithms: Especially Sections 4.3.1, 4.3.2, 4.3.3

119

Image Credit:
Flickr user: Lee Jordan 
Creative Commons License

http://creativecommons.org/licenses/by-sa/3.0/us/
https://github.com/arcetri/gmprime
https://github.com/arcetri/goprime
http://jpenne.free.fr/index2.html
https://github.com/arcetri/verified-prime
https://www.mersenne.org
https://www.mersenne.org/download/
http://www.isthe.com/chongo/tech/math/number/number.html
http://www.isthe.com/chongo/tech/math/number/howhigh.html
http://www.isthe.com/chongo/tech/math/prime/mersenne.html
http://www.isthe.com/chongo/tech/math/prime/mersenne.html#largest
https://www.eff.org/awards/coop
https://www.eff.org/awards/coop/rules

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

www.isthe.com/chongo/tech/math/prime/prime-tutorial.pdf
Questions for Part 2
• 1) Why is it faster to search for a large prime of the form

 h*2n-1 than 2p-1?
- Hint: See 69, 70

• 2) Assume M(92798969) is proven prime, what would a good choice of n
 (exponent of 2) to use when searching for a new largest known prime?

- Hint: 92798969 in binary is: 101100001111111111111111001
- Hint: See slides 92, 93, 94

• 3) How many state machines would it take to test 215802117*277594624-1?
- Hint: See slides 101, 105

• 4) What types of error checking could help correctly find a new largest known prime?
- Hint: See slides 106, 107

• 5) Prove that 19*25-1 = 607 is prime using the Riesel Test
- Hint: U(2) = V(19) = 52

- V(1) = 3 (although V(1) = 4 also works)

- Hint: See slides 74, 75, 76, 80, 81
120

Image Credit:
Flickr user bitzcelt

Creative Commons License

http://creativecommons.org/licenses/by-sa/3.0/us/
http://www.isthe.com/chongo/tech/math/prime/prime-tutorial.pdf

Bottom of talk.

Any Questions?

Thank you.
Landon Noll Touching the South Geographic Pole ± 1cm

Antarctica Expedition 2013

© 2022 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.

Landon Curt Noll

121

http://www.isthe.com/chongo/tech/math/prime/prime-tutorial.pdf

http://creativecommons.org/licenses/by-sa/3.0/us/
http://www.isthe.com/chongo/tech/math/prime/prime-tutorial.pdf

