A Grand Coding Challenge!

Finding a new Largest Known Prime

The Great indoor sport of hunting for world record-sized prime numbers

Landon Curt Noll
prime-tutorial-mail@asthe.com
www.isthe.com/chongo
v1.81 — 2019 May 23

“Two is a most odd prime because Two is the least even prime.”

-- Dr. Dan Jurca

“That’s a big prime!”

Image by Matthew Harvey © 2003
Agenda - Part 1 - Mersenne Primes

• Part 1.A & 1.B - 75 minutes (09:00 - 10:15)

• \(2^2-1\): What is a Prime Number?
• \(2^3-1\): 423+ Years of Largest known primes
• \(2^5-1\): Factoring vs. Primality Testing
• \(2^7-1\): Lucas-Lehmer Test for Mersenne Numbers
• \(2^{13}-1\): The Mersenne Exponential Wall
• \(2^{17}-1\): Pre-screening Lucas-Lehmer Test Candidates
• \(2^{19}-1\): How Fast Can You Square?

• Part 1 Exercise and Quiz - 10 minutes (10:15 - 10:25)
• Discuss Part 1 Questions - 5 minutes (10:25 - 10:30)
Agenda - Break

• Break - 30 minutes (10:30 - 11:00)
Agenda - Part 2 - Large Riesel Primes Faster

- Part 2 - 75 minutes (11:00 - 12:15)
 - $2^{31}-1$: Riesel Test: Searching sideways
 - $2^{61}-1$: Pre-screening Riesel test candidates
 - $2^{89}-1$: Multiply+Add in Linear Time
 - $2^{127}-1$: Final Words and Some Encouragement
 - $2^{521}-1$: Resources

- Part 2 Exercise and Quiz - 10 minutes (12:15 - 12:25)
- Discuss Part 2 Questions - 5 minutes (12:25 - 12:30)

- Optional Discussion / General Q&A - As needed (12:30- TBD)
Part 1.A - Mersenne Primes

- $2^n - 1$: What is a Prime Number?
- $2^3 - 1$: 423+ Years of Largest known primes
- $2^5 - 1$: Factoring vs. Primality Testing
- $2^7 - 1$: Lucas-Lehmer Test for Mersenne Numbers

Image Credit:
King Henry VIII’s armor
wallyg Flickr user
Creative Commons License
Some Notation

• Common assumption in many number theory papers:
 - A variable is an integer unless otherwise stated

• \(M(p) = 2^p - 1\)
 - \(p\) is often prime :-)

• The symbol \(\equiv\) means “identical to”
 - Think =
 - Difference between = and \(\equiv\) is important to mathematicians
 - The difference is not important to understand how to perform the test

• \(\text{mod}\) (short for modulus)
 - Think “divide and leave the remainder”
 - \(5 \mod 2 \equiv 1\) \(\quad 14 \mod 4 \equiv 2\) \(\quad 21 \mod 7 \equiv 0\)
2^{2-1}: What is a Prime Number?

• A natural number (1, 2, 3, …) is prime if and ONLY IF:
 - it has only 2 distinct natural number divisors
 - 1 and itself

• The first 25 primes:
 - 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97
 - There are 25 primes < 100

• 6 is not prime because: 2 * 3 = 6
 - 1, 2, 3, and 6 are factors of 6 (i.e., 6 has 4 distinct natural number divisors)
Why is 1 not prime?

• Almost nobody on record defined 1 as prime until Stevin in 1585

• From the mid 18th century to the start of the 20th century
 - There were many who called 1 a prime

• Today we commonly use definitions where 1 is not prime

• Fundamental theorem of arithmetic in commonly use today does not assume that 1 is prime
 - Any natural number can be expressed as a unique (ignoring order) product of primes
 - 1400 = 2 * 2 * 2 * 5 * 5 * 7
 - No other product of primes = 1400
 - If 1 were prime:
 - 1400 = 2 * 2 * 2 * 5 * 5 * 7 * 1
 - 1400 = 2 * 2 * 2 * 5 * 5 * 7 * 1 * 1 * ...

• Q: What is a “mathematical definition”? A: The pragmatic answer:
 - .. something that the mathematical community agrees upon

• Q: What is a “mathematical truth”? A: The pragmatic answer:
 - .. something that the mathematical community has studied and has been demonstrated to be true
What is the Largest Known Prime: $2^{82589933} - 1$

- 24,862,048 decimal digits
 - 4,973 pages (100 lines, 50 digits per line)
 - https://lcn2.github.io/mersenne-english-name/m82589933/prime-c.html
 - 1,488,944,457,420,413,
 - 255,478,064,584,723,979,166,030,262,739,927,953,241,852,712,894,252,132,393,
 - … 436 173 lines skipped here …
 - 557,947,958,297,531,595,208,807,192,693,676,521,782,184,472,526,640,076,912,
 - 114,355,308,311,969,487,633,766,457,823,695,074,037,951,210,325,217,902,591

- The English name for this prime is over 656 megabytes long:
 - Double sided printing, 100 lines per side, requires over 82 (500 sheet per ream) reams of paper!
 - https://lcn2.github.io/mersenne-english-name/m82589933/prime.html
 - one octomilliamilliaduocenseptenoctoginmilliatrecenoctoquadragintillion,
 - four hundred eighty eight octomilliamilliaduocenseptenoctoginmilliatrecenseptenquadragintillion,
 - nine hundred forty four octomilliamilliaduocenseptenoctoginmilliatrecensexquadragintillion,
 - … 8,280,068 lines skipped here …
 - two hundred seventeen million,
 - nine hundred two thousand,
 - five hundred ninety one
There is No Largest Prime - The Largest Known Prime Record can always be Broken!

• Assume there are finitely many primes (and 1 is not a prime)

• Let A be the product of “all primes”

• Let p be a prime that divides A+1

• Since p divides A
 - Because A is the product of “all primes”

• And since p divides A+1

• Therefore p must divide 1
 - Which is impossible

• Which contradicts our original assumption
What is a Mersenne Prime?

• Mersenne number: $2^n - 1$
 - Examples: $2^3 - 1$ $2^{11} - 1$ $2^{67} - 1$ $2^{23209} - 1$

• A Mersenne prime is a mersenne number that is prime
 - Examples: $2^3 - 1$ $2^{23209} - 1$

• Why the name Mersenne?
 - Marin Mersenne: A 17th century french monk
 • Mathematician, Philosopher, Musical Theorist
 - Claimed when $p = 2, 3, 5, 7, 13, 17, 19, 31, 67, 127, 257$ then $2^p - 1$ was prime
 - $2^{61} - 1$ proven prime in 1883 - was Mersenne's 67 was a typo of 61?
 - $2^{67} - 1 = 761838257287 \times 193707721$ in 1903 - Still a typo?
 3 years of Saturdays for Cole to factor by hand: 147573952589676412927
 - $2^{89} - 1$ proven prime in 1911 - OK he missed one - 2nd strike
 - $2^{107} - 1$ proven prime in 1914 - 3rd strike - Forget it!
 - After more than 300 years his name stuck
2^{3-1}: 423+ Years of Largest Known Primes

- Earliest explicit study of primes: Greeks (around 300 BCE)
- 1588: First published largest known primes
 - Cataldi proved 131701 (2^{17}-1) & 524287 (2^{19}-1) were prime
 - Produced an complete table of primes up to 743
 - Made an exhaustive factor search of 2^{17}-1 & 2^{19}-1
 By hand, using roman numerals!
 - Held the record for more than 2 centuries!
- 1772: Euler proved 2^{31}-1 (2^{147483647}) was prime
 - A clever proof to eliminate almost all potential factors, trial division for the rest
 - Euler said: “2^{31}-1 is probably the greatest (prime) that ever will be discovered … it is not likely that any person will attempt to find one beyond it.”
- 1867: Landry completely factored 2^{59}-1 = 179951 * 3203431780337
 - 3203431780337 was the largest known prime by the fundamental theorem of arithmetic
 - By trial division after eliminating almost all potential factors
1st Prime Records without Factoring, by Hand

• 1876: Édouard Lucas proved \(2^{127}-1\) was prime
 - \[170141183460469231731687303715884105727\]
 - Édouard Lucas made significant contributions to our understanding of Fibonacci-like Lucas sequences
 - Lucas sequences are the heart of the Lucas-Lehmer test for Mersenne Primes
 \[2, 1, 3, 4, 7, 11, 18, 29, \ldots\]

• Lucas proved that \(2^{127}-1\) had a property that only possible when \(2^P-1\) was prime
Factoring vs. Primality testing

- Factoring and Prime testing methods overlap only in the trivial case:

 - Useful to test numbers with only a “handful of digits”

- 1951: Ferrier factored $2^{148}+1$ and proved that $(2^{148}+1)/17$ was prime
 - Using a desk calculator after eliminating most factor candidates
 - Largest record prime, 44 digits, discovered without the use of a digital computer

- Largest “general” number factored in 2009 had only 232 digits
 - Primes larger than 232 digits were discovered in 1952
Pseudo-primality Tests

• Some mathematical tests are true when a number is prime

• A pseudo primality test
 - A property that every prime number must pass … however some non-primes also pass

• Fermat pseudoprime test
 - If p is an odd prime, and a does not divide p, then $a^{(p-1)}-1$ is divisible by p
 - Let: $p = 23$ and $a = 2$ which is not a factor of 23, then $2^{22}-1 = 4194303$ and $23 \times 182361 = 4194303$
 - However 341 also passes the test
 - for $a = 2$: $2^{340}-1$ is divisible by 341 but $341 = 11 \times 31$

• Passing a Pseudoprime test does NOT PROVE that a number is prime!
 - Failing a Pseudoprime test only proves that a number is not prime

• There are an infinite number of Fermat pseudoprimes
 - There are an infinite number of Fermat pseudoprimes that pass for every allowed value of “a”
 - These are called Carmichael numbers
Primality Testing in the Age of Digital Computers

- 1951: Miller and Wheeler proved $180*(2^{127}-1)^2 + 1$ prime using EDSAC1
 - $5210644015679228794060694325390955853335898483908056458352183851018372555735221$
 - A 79 digit prime
 - Using a specialized proof of primality

- 1952: Robison and Lehmer using the SWAC using the Lucas-Lehmer test
 - 1952 Jan 30 $2^{521}-1$ is prime
 - 1952 Jan 30 $2^{607}-1$ is prime
 - 1952 June 25 $2^{1279}-1$ is prime
 - 1952 Oct 7 $2^{2203}-1$ is prime
 - 1952 Oct 9 $2^{2281}-1$ is prime

- Robison coded the SWAC over the 1951 Christmas holiday
 - By hand writing down the machine code as digits using only the SWAC manual
 - Was Robison’s first computer program he ever wrote
 - Ran successfully the very first time!
Some primality tests are definitive

In 1930, Dr. D. H. Lehmer extended Lucas’s work
 - This test was the subject of Dr. Lehmer’s Thesis

Known as a Lucas-Lehmer test
 - A definitive primality test

The most efficient proof of primality known
 - Work to prove primality vs. size of the number tested
 - Theoretical argument suggests test may be the most efficient possible

It was my honor and pleasure to study under Dr. Lehmer
 - One of the greatest computational mathematicians of our time
 - Like prime numbers, there will always be greater mathematicians :)
 - Was willing to teach math to a couple of high school kids like me
Lucas-Lehmer test *

- $M(p) = 2^p - 1$ is prime IF AND ONLY IF p is prime and $U_p \equiv 0 \mod (2^p - 1)$

 - Where $U_2 = 4$

 - and $U_{x+1} \equiv (U_x^2 - 2) \mod (2^p - 1)$

* This is Landon Noll’s preferred version of the test:

 others let $U_1 = 4$ and test for $U_{(p-1)} \equiv 0 \mod 2^p - 1$,

 and still others let $U_2 = 4$ and test for $U_{(p-1)} \equiv 0 \mod 2^p - 1$
Lucas-Lehmer Test - Mersenne Prime Test

- Mersenne prime test for $M(p) = 2^p - 1$ where p is prime

- Let $U_2 = 4$

- Repeat until U_p is calculated: $U_{i+1} \equiv (U_i^2 - 2) \mod (2^p - 1)$
 - Square the previous U_i term
 - Subtract 2
 - $\mod (2^p - 1)$ (divide by $2^p - 1$ and take the remainder)

- Does the final $U_p \equiv 0$???
 - Yes - $M(p) = 2^p - 1$ is prime
 - No - $M(p) = 2^p - 1$ is not prime

Minor Planet 8191 is named after Mersenne
$8191 = 2^{13} - 1$
Lucas-Lehmer Test Example

• Is $M(5) = 2^5 - 1 = 31$ prime?

• 5 is prime so according to the Lucas-Lehmer test:
 - $2^5 - 1$ prime if and only if $U_5 \equiv 0 \mod 31$
 - where $U_2 = 4$ and $U_{x+1} \equiv U_x^2 - 2 \mod 31$

• $U_2 = 4$ (by definition)
Lucas-Lehmer Test Example

- Is $M(5) = 2^5 - 1 = 31$ prime?

- 5 is prime so according to the Lucas-Lehmer test:
 - $2^5 - 1$ prime if and only if $U_5 \equiv 0 \bmod 31$
 - where $U_2 = 4$ and $U_{x+1} \equiv U_x^2 - 2 \bmod 31$

- $U_2 = 4$ (by definition)

- $U_3 = 4^2 - 2 = 16 - 2 = 14$
Lucas-Lehmer Test Example

- Is $M(5) = 2^5 - 1 = 31$ prime?

- 5 is prime so according to the Lucas-Lehmer test:
 - $2^5 - 1$ prime if and only if $U_5 \equiv 0 \mod 31$
 - where $U_2 = 4$ and $U_{x+1} \equiv U_x^2 - 2 \mod 31$

- $U_2 = 4$ (by definition)

- $U_3 = 4^2 - 2 = 14 \mod 31 \equiv$
Lucas-Lehmer Test Example

• Is $M(5) = 2^5 - 1 = 31$ prime?

• 5 is prime so according to the Lucas-Lehmer test:
 - $2^5 - 1$ prime if and only if $U_5 \equiv 0 \mod 31$
 - where $U_2 = 4$ and $U_{x+1} \equiv U_x^2 - 2 \mod 31$

• $U_2 = 4$ (by definition)

• $U_3 = 4^2 - 2 = 14 \mod 31 \equiv 14$

• $U_4 = 14^2 - 2 =$
Lucas-Lehmer Test Example

- Is $M(5) = 2^5 - 1 = 31$ prime?

- 5 is prime so according to the Lucas-Lehmer test:
 - $2^5 - 1$ prime if and only if $U_5 \equiv 0 \mod 31$
 - where $U_2 = 4$ and $U_{x+1} \equiv U_x^2 - 2 \mod 31$

- $U_2 = 4$ (by definition)

- $U_3 = 4^2 - 2 = 14 \mod 31 \equiv 14$

- $U_4 = 14^2 - 2 = 194 \mod 31 \equiv \%

Image Credit: Flickr user duegnazio
Creative Commons License
Lucas-Lehmer Test Example

• Is $M(5) = 2^5 - 1 = 31$ prime?

• 5 is prime so according to the Lucas-Lehmer test:
 - $2^5 - 1$ prime if and only if $U_5 \equiv 0 \mod 31$
 - where $U_2 = 4$ and $U_{x+1} \equiv U_x^2 - 2 \mod 31$

• $U_2 = 4$ (by definition)

• $U_3 = 4^2 - 2 = 14 \mod 31 \equiv 14$

• $U_4 = 14^2 - 2 = 194 \mod 31 \equiv 8$

• $U_5 = 8^2 - 2 =$
Lucas-Lehmer Test Example

- Is $M(5) = 2^5-1 = 31$ prime?

- 5 is prime so according to the Lucas-Lehmer test:
 - 2^5-1 prime if and only if $U_5 \equiv 0 \mod 31$
 - where $U_2 = 4$ and $U_{x+1} \equiv U_x^2 - 2 \mod 31$

- $U_2 = 4$ (by definition)

- $U_3 = 4^2 - 2 = 14 \mod 31 \equiv 14$

- $U_4 = 14^2 - 2 = 194 \mod 31 \equiv 8$

- $U_5 = 8^2 - 2 = 62 \mod 31 \equiv 26$
Lucas-Lehmer Test Example

• Is $M(5) = 2^5 - 1 = 31$ prime?

• 5 is prime so according to the Lucas-Lehmer test:
 - $2^5 - 1$ prime if and only if $U_5 \equiv 0 \pmod{31}$
 - where $U_2 = 4$ and $U_{x+1} \equiv U_x^2 - 2 \pmod{31}$

• $U_2 = 4$ (by definition)

• $U_3 = 4^2 - 2 = 14 \pmod{31} \equiv 14$

• $U_4 = 14^2 - 2 = 194 \pmod{31} \equiv 8$

• $U_5 = 8^2 - 2 = 62 \pmod{31} \equiv 0$

• Because $U_5 \equiv 0 \pmod{31}$ we know that 31 is prime
Lucas-Lehmer Test Example II

• Is $M(11) = 2^{11}-1 = 2047$ prime?

• 11 is prime so according to the Lucas-Lehmer test:
 - $2^{11}-1$ prime if and only if $U_{11} \equiv 0 \mod 2^{11}-1$

• Calculating U_{11}
 - $U_2 = 4$ (by definition)
 - $U_3 = 4^2 - 2 = 14 \mod 2047 \equiv 14$
 - $U_4 = 14^2 - 2 = 194 \mod 2047 \equiv 194$
 - $U_5 = 194^2 - 2 = 37634 \mod 2047 \equiv 788$
 - $U_6 = 788^2 - 2 = 620942 \mod 2047 \equiv 701$
 - $U_7 = 701^2 - 2 = 491399 \mod 2047 \equiv 119$
 - $U_8 = 119^2 - 2 = 14159 \mod 2047 \equiv 1877$
 - $U_9 = 1877^2 - 2 = 3523127 \mod 2047 \equiv 240$
 - $U_{10} = 240^2 - 2 = 57598 \mod 2047 \equiv 282$
 - $U_{11} = 282^2 - 2 = 79522 \mod 2047 \equiv 1736$ $\lllnot 0$ therefore 2047 is not prime ($23 \times 89 = 2047$)
Mersenne Prime Exponents must be Prime

- If \(M(p) = 2^p - 1 \) is prime, then \(p \) must be prime
- If \(x \) is not prime, then \(M(x) = 2^x - 1 \) is not prime

- Look at \(M(9) = 2^9 - 1 \) in binary
 - 111111111

- We can rewrite \(M(9) \) as this product:
 - 1001001
 \[\begin{array}{c}
 x \\
 111
 \end{array} \]
 \[\begin{array}{c}
 \hline
 \end{array} \]
 - 111111111

- If \(x = y \times z \)
 - then \(M(x) \) has \(M(y) \) and \(M(z) \) as factors AND therefore \(M(x) \) cannot be prime
Record Primes 1957 - 1961

- 1957: M(3217) 969 digits Riesel using BESK
- 1961: M(4423) 1332 digits Hurwitz & Selfridge using IBM 7090
 - The M(4423) was proven the prime same evening M(4253) was proven prime
 - Hurwitz noticed M(4423) before M(4253) because the way the output was stacked
 - Selfridge asked:
 - “Does a machine result need to be observed by a human before it can be said to be discovered?”
 - Hurwitz responded:
 - “… what if the computer operator who piled up the output looked?”
 - Landon believes the answer to Selfridge’s question is yes
 - Landon speculates that even if the computer operator looked, they very likely did not understand the meaning of the output:
 - Therefore Landon (and many others) believe M(4253) was never the largest known prime
Record Primes at UIUC: 1963

- 1963: M(9668) 2917 digits Donald B. Gillies using the ILLIAC 2
- 1963: M(9941) 2993 digits Donald B. Gillies using the ILLIAC 2
- 1963: M(11213) 3376 digits Donald B. Gillies using the ILLIAC 2

Largest known prime until:

- 1971: M(19937) 6002 digits Tuckerman using the IBM 360/91
Landon’s Record Primes: 1978 - 1979

- 1978: M(21701) 6533 digits Noll & Nickel using the CDC Cyber 174
- 1979: M(23209) 6987 digits Noll using the CDC Cyber 174

1st working version of the code took 500+ hours to test M(21001) on 1 April 1977

The 1 Oct 1978 version took 7 hours, 40 minutes and 20 seconds to test M(21701)
 - Proven prime on 1978 Oct 30

Searched M(21001) thru M(24499) using 6000+ CPU Hours on Cyber 174
 - Used the facility account and much encouragement from Dr. Dan Jurca
Cray Record Primes

- 1979: M(44497) 13 395 digits Nelson & Slowinski using the Cray 1
- 1982: M(86243) 25 962 digits Slowinski using the Cray 1
- 1983: M(132049) 39 751 digits Slowinski using the Cray X-MP
- 1985: M(216091) 65 050 digits Slowinski using the Cray X-MP/24

Creative Commons License
Part 1.B - Mersenne Prime Search

• $2^{13} - 1$: The Mersenne Exponential Wall
• $2^{17} - 1$: Pre-screening Lucas-Lehmer Test Candidates
• $2^{19} - 1$: How Fast Can You Square?
$2^{13}-1$: The Mersenne Exponential Wall

- The Lucas-Lehmer Test for $M(p)$ requires computing $p-1$ terms of U_i:
 - $U_{i+1} \equiv U_i^2 - 2 \mod 2^{p-1}$

- That is $p-1$ times performing ...
 - Sub-step 1: square a number
 - Sub-step 2: subtract 2
 - Sub-step 3: mod 2^{p-1}

- … on numbers between 0 and 2^p-2
 - On average numbers that are p bits long
 - or $2p$ bits when dealing with the result of the square
Sub-step 1: Square

• Consider this classical multiply:

\[
\begin{array}{ccc}
1 & 2 & 3 \\
\times & 4 & 5 & 6 \\
\hline
6 & 12 & 18 \\
5 & 10 & 15 \\
4 & 8 & 12 \\
\hline
5 & 6 & 0 & 8 & 8 \\
\end{array}
\]

- 3 x 3 digit multiply
- 9 products
- 5 adds
- 5 carry adds

• On the average a d x d digit multiply requires $O(d^2)$ operations:
 - Products: d^2
 - Adds: d^2
Sub-step 2: subtract 2

• This step is trivial

• On average requires 1 subtraction
 - $O(1)$ steps
Sub-step 3: mod 2^p-1 by Shift and Add

- It turns out that this is easy too!
 - Just a shift and add!

- Split U_i^{2-2} into two chunks and make low order chunk p bits long:

 $U_i^{2-2} = \begin{array}{c}
 \text{J} \\
 \text{K}
 \end{array}$

- Then $U_i^{2-2} \mod 2^p-1 \equiv J + K$

- If $J + K > 2^p-1$ then split again
 - In this case the upper chunk will be 1, so just add 1 to the lower chunk

- So mod 2^p-1 can be done in $O(d)$ steps
Sub-step 3: mod 2^p-1 - An Example

- Split L into two chunks and make low order chunk p bits long:

 $U_x^{2-2} = \begin{array}{c} J \\ K \end{array}$

- For $p=31$, $U_{22} = 1992425718$

- $U_{22}^{2-2} = 396976024174781522 = -110111000101110110101111101000001111001101100011100010$

- $J = 1101110001011101101011111010000$
 $K = 011110011011000111010001100010$
 $J+K = 10101011000001111100010000110010$

- Now $J + K > 2^{31}-1$ so peel off the upper 1 bit and add it into the bottom

 $010101100001111100010000110010 \uparrow$
 $010101100001111100010000110011 = 721929267$

- $U_{23} = U_{22}^{2-2} \mod 2^{31}-1 = 721929267$
So Computing U(x)

- Sub-step 1: square requires $O(p^2)$ operations
- Sub-step 2: subtract requires $O(1)$ operation
- Sub-step 3: mod 2^p-1 requires $O(p)$ operations

- The time to square dominates over the time subtract and mod

- Computing U_i requires $O(p^2)$ operations

- We have to compute $p-1$ terms of U_i to test 2^p-1

- The prime test is $O(p^3)$ operations
$O(p^3)$ doesn’t Scale Nicely as P Grows

- If it takes a computer 1 day to test $M(p)$
- 8 days to test $M(2*p)$
- 4 months to test $M(5*p)$
- 2.7 years to test $M(10*p)$
- etc. !!!

Image Credit:
Flickr user sylvia@intrigue
Creative Commons License
Note that weight is in Kg
2^{17}-1: Pre-screening Lucas-Lehmer Test Candidates

• Performing the Lucas-Lehmer test on M(p) is time consuming
 - Even if it is very a very efficient definitive test given the size of the number testing

• Try to pre-screen potential candidates by looking for tiny factors
 - If you find a small factor of M(p) then there is no need to test

• It can be proven that a factor q of M(p) must be of this form:
 - q ≡ 1 mod 8 or q ≡ 7 mod 8
 - q = 2*k*p+1 for some integer k > 1

• Factor candidates of M(p) are either 4*p or 2*p apart
 - When p is large, you can skip over a lot of potential factors of M(p)
Pre-screen Factoring Rule of Thumb

• For a given set of Mersenne candidates: M(a), M(b), … M(z)
 - Where z is not much bigger than a (say a < z < a*1.1)
 - Start factoring candidates until the rate of finding factors is slower than the Lucas-Lehmer test for the M(z)

• Typically this rule of thumb will eliminate 50% of the candidates
2^{19}-1: How Fast Can You Square?

- The time to square dominates the subtract and mod
 - So Mersenne Prime testing comes down to how fast can you square
Classical Square Slightly Faster Than Multiply

• Because the digits are the same on both, we can cut multiplies in half:

\[
\begin{array}{cccc}
3 & 4 & 5 & 6 \\
\times & 3 & 4 & 5 & 6 \\
\hline
18 & 24 & 30 & 36 \\
15 & 20 & 25 & 30 \\
12 & 16 & 20 & 24 \\
9 & 12 & 15 & 18 \\
\end{array}
\]

4 x 4 digit multiply

10 products

6 of which are doubled by shifting

• On the average a d x d digit square requires O(d^2) operations:
 - Products: d^2/2
 - Shifts: d^2/2 (shifts are faster than products)
 - Adds: d^2
Reduce Digits by Increasing Base

• No need to multiply base 10

• If a computer can ...
 - Multiply two B bit words produce a 2*B product
 - Divide 2*B bit double word by B bit divisor and produce B bit dividend & remainder
 - Add or Subtract B bit words and produce a B bit sum or difference

• … then represent your digits in base 2^B
 - Each B bit word will be a digit in base 2^B

• Test M(p) requires p bit squares or p/B word squares

• Classical square requires $O((p/B)^2)$ operations
 - The work still grows by the square of the digits $O(d^2)$
Squaring by Transforms

- Convolution Theorem states:
 - The Transform of the ordinary product equals dot product of the Transforms
 - $T(x*y) = T(x) \cdot T(y)$
 - $T(\text{foo})$ is the transform of foo

- While ordinary product is $O(p^2)$ the dot product is $O(p)$!!!
 - Dot product: $a[0]*b[0] + a[1]*b[1] + a[2]*b[2] + \ldots + a[\text{max}]*b[\text{max}]$

- Multiplication by transform:
 - $x*y = \text{TINV}(T(x) \cdot T(y))$
 - $\text{TINV}(\text{foo})$ is the inverse transform of foo

- A Square by Transform can approach $O(d \ln d)$
 - $\ln d$ is natural log of d
 - Scales much much better than $O(d^2)$
Squaring by Transform II

• Fast Fourier Transform (FFT)
 - An example of a Transform where the Convolution Theorem holds
 - There are more efficient Transforms for digital computers

• To compute $A = X^2$
 - Step 1: Transform X: $Y = T(X)$
 - Step 2: Compute dot product: $Z = Y \cdot Y$
 - Step 3: Inverse transform $A = TINV(Z)$

• The prime test is $O(p^2 \ln p)$ operations with Transform Squaring
 - $\ln p$ is natural log of p
 - If it takes a computer 1 day to test $M(p)$
 - 2.7 days to test $M(2^p)$ (instead of 8 days)
 - 40 days to test $M(5^p)$ (instead of 4 months)
 - 7.6 months to test $M(10^p)$ (instead of 2.7 years)
Transform of an Integer?

• Treat the integer as a wave:
 - with bit value amplitude
 - with time starting from low order bit to high order bit
 - 0 1 1 0 0 1 0 1

• Assume that wave form is infinitely repeating:
 - 0 1 1 0 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 1 0 1 1 0 0 1 0 1 0 1 1 0 0 1 0 1 0 1 1 0 0 1 0 1 0 1 1 0 0 1 0 1...

• Convert that wave from time domain into frequency domain:
 - Take the spectrum of the infinitely repeating waveform:

I faked this graph :-}
Digital Transforms are Approximations

• The effort to perform a perfect transform requires:
 - Computing infinite sums with infinite precision
 - Infinite operations are “Well beyond” the ability for finite computers to perform :-)

• Inverse Transform converts frequency domain ...

 ... back to time domain:
 - 0.17 0.97 1.04 -0.21 -0.06 0.95 -0.18 0.89
 - Because of “rounding” approximation errors the result is not pure binary
 - So we round to the nearest integer:
 - 0 1 1 0 0 1 0 1

• These examples assumed a 8-point 1D transform
Pad with Zeros to Hold the Final Product

• We need 2n bits to hold the product of two n-bit values
 - The Transform needs twice the points to hold the product

• We add n leading 0’s to our values before we multiply:
 - 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1

General Square Transform Algorithm

• To square p-bit value:
 - Pad the value with p leading 0 bits
 - Forms a 2*p-bit value: upper half 0's and lower half the value we wish to square
 - The transform may require a certain number of points
 - Such as a power of two number of points
 - If needed, pad additional 0's until the required number of points is achieved
 - Perform the Transform on the padded value
 - Convolve the signal in the transform space
 - Dot product: Just 1 square for each transform point (not an n^2 operation)
 - Perform the Inverse Transform
 - Divide the real part of each digit by the number of points and round to the nearest integer
 - Propagate carries
FFT Square Example Output

- **Input:** \(0 \ 0 \ 3 \ 2\)

- **Freq:** \((-1.251,3.001i) \ (0.248,0.003i) \ (-1.250,-3.005i) \ (6.257,0.007i)\)
 - After transform - FFT errors exaggerated for dramatic effect

- **FFT output:** \((0.091,-0.041i) \ (35.896,0.055i) \ (47.916,-0.127i) \ (16.183,0.127i)\)
 - After square and inverse transform - FFT errors exaggerated for dramatic effect

- **Round to integers:** \((0,0i) \ (36,0i) \ (48,0i) \ (16,0i)\)

- **Extract reals:** \(0 \ 36 \ 48 \ 16\)

- **Scale output:** \(0 \ 9 \ 12 \ 4\)
 - Divide each cell by the initial number of cells

- **After carries propagated:** \(1 \ 0 \ 2 \ 4\)
Try the FFTW library:
 - http://www.fftw.org/

Makefile:

```
# FFT square example using fftw
#
# See: http://www.fftw.org
#
# chongo (Landon Curt Noll) \oo/\ -- Share and Enjoy! :-) 

fftsq: fftsq.c
    cc fftsq.c -lfftw3 -lm -Wall -o fftsq
```
FFT Square Example C Source

/*
 * FFT square example using fftw
 * See: http://www.fftw.org
 * chongo (Landon Curt Noll) /\oo/\ -- Share and Enjoy! :-)
*/

#define N 4 /* points in FFT */

/* digit arrays - least significant digit first */
long input[N] = { 2, 3, 0, 0 }; /* input integer, upper half 0 padded */
long output[N]; /* squared input */

#include <stdlib.h>
#include <math.h>
#include <fftw3.h>
#include <complex.h>

int main(int argc, char *argv[])
{
 complex *in; /* input as complex values */
 complex *freq; /* transformed integer as complex values */
 complex *sq; /* squared input */
 fftw_plan trans; /* FFT plan for forward transform */
 fftw_plan invtrans; /* FFT plan for inverse transform */
 int i;

 /* allocate for fftw */
 in = (complex *) fftw_malloc(sizeof(fftw_complex) * N);
 freq = (complex *) fftw_malloc(sizeof(fftw_complex) * N);
 sq = (complex *) fftw_malloc(sizeof(fftw_complex) * N);
FFT Square Example C Source

```c
/*
 * load long integers into FFT input array
 */
for (i=0; i < N; ++i) {
    in[i] = (complex)input[i];  /* long integer to complex conversion */
}

/* debugging */
printf("input:  ");
for (i=N-1; i >= 0; --i) {
    printf(" %ld  ", input[i]);
}
putchar(\n);

/*
 * forward transform
 */
trans = fftw_plan_dft_1d(N, (fftw_complex*)in, (fftw_complex*)freq,
                        FFTW_FORWARD, FFTW_ESTIMATE);
fftw_execute(trans);
```
FFT Square Example C Source

```c
/*
 * square the elements
 */
for (i=0; i < N; ++i) {
    freq[i] = freq[i] * freq[i];    /* square the complex value */
}

/* debugging */
printf("freq: ");
for (i=N-1; i >= 0; --i) {
    printf("(%f,%fi) ", creal(freq[i])/N, cimag(freq[i])/N);
}
putchar('\n');

/*
 * inverse transform
 */
invtrans = fftw_plan_dft_1d(N, (fftw_complex*)freq, (fftw_complex*)sq,
                             FFTW_BACKWARD, FFTW_ESTIMATE);
fftw_execute(invtrans);

/*
 * convert complex to rounded long integer
 */
for (i=0; i < N; ++i) {
    output[i] = (long)(creal(sq[i]) / (double)N); /* complex to scaled long integer */
}
```

FFT Square Example C Source

/*
 * output the result
 */
printf("fft output: ");
for (i=N-1; i >= 0; --i) {
 printf("(%f,%fi) ", creal(sq[i]), cimag(sq[i]));
}
putchar(\n');
/* NOTE: Carries are not propagated in this code */
printf("scaled output: ");
for (i=N-1; i >= 0; --i) {
 printf(" %ld ", output[i]);
}
putchar(\n');

/*
 * cleanup
 */
fftw_destroy_plan(trans);
fftw_destroy_plan(invtrans);
fftw_free(in);
fftw_free(freq);
fftw_free(sq);
exit(0);
}
FFT Square Example C Source - Just the Facts

/* load long integers into FFT input array */
for (i=0; i < N; ++i) {
 in[i] = (complex)input[i]; /* long integer to complex conversion */
}

/* forward transform */
trans = fftw_plan_dft_1d(N, in, freq, FFTW_FORWARD, FFTW_ESTIMATE);
fftw_execute(trans);

/* square the elements */
for (i=0; i < N; ++i) {
 freq[i] = freq[i] * freq[i]; /* square the complex value */
}

/* inverse transform */
invtrans = fftw_plan_dft_1d(N, freq, sq, FFTW_BACKWARD, FFTW_ESTIMATE);
fftw_execute(invtrans);

/* convert complex to rounded long integer */
for (i=0; i < N; ++i) {
 output[i] = (long)(creal(sq[i]) / (double)N) /* complex to scaled long integer */
}

/* NOTE: TODO: propagate carries */
The Details are in the Rounding!

• Just like in classical multiplication / squaring
 - Using a larger base helps
 - We do not need to put 1 digit per cell like in the previous “examples”

• What base can we use?
 - Too small of a base: Slows down the test!
 - Too large of a base: The final rounding rounds to the wrong value

• Expect to use a base of “about 1/4” of the CPU’s numeric precision
 - The Amdahl 1200 had a floating point 96 bit mantissa: 18900 point transform used a base of 2^{23}

• Analyze the digital rounding errors
 - Estimate the maximum precision you can use
 - Test your estimate
 - Test worst case energy spike patterns
 - Add check code to your multiply / square routine to catch any other mistakes
 - Verify that $U_x^2 \mod 2^{64}.3 = (U_x \mod 2^{64}.3)^2 \mod 2^{64}.3$
 - Verify that complex part of point output rounds to 0
Try non-Fourier Transforms

• Some of the integer transforms perform well on some CPUs
 - Especially where integer CPU ops are fast vs. floating point

• PFA Fast Fourier Transform and on Winograd's radix FFTs
 - Used by Amdahl 6 to find a largest known prime

• Dr. Crandall’s transform
 S0025-5718-1994-1185244-1.pdf
 - GIMPS used Dr. Crandall’s transform to find many largest known primes
 - See also https://www.daemonology.net/papers/fft.pdf

• Schönhage–Strassen Transform
 - Used by the GNU Multiple Precision Arithmetic Library
 - Used by FLINT

• Roll your own efficient Transform
 - Ask a friendly computational mathematician for advice
Even Better: Number Theoretic Transforms

• Avoids complex arithmetic
 - Uses powers of integers modulo some prime instead of complex numbers

• Examples:
 - Schönhage–Strassen algorithm
 - https://tonjanee.home.xs4all.nl/SSAdescription.pdf
 - GNU Multiple Precision Arithmetic Library, See: https://gmplib.org
 - Crandall’s Transform
 - https://www.daemonology.net/papers/fft.pdf
 - Fürer's algorithm
 - Anindya De, Chandan Saha, Piyush Kurur and Ramprasad Saptharishi gave a similar algorithm that relies on modular arithmetic
 - Symposium on Theory of Computation (STOC) 2008, see https://arxiv.org/abs/0801.1416

• A good primer on Number Theoretic Transform Multiplication:
 - https://tonjanee.home.xs4all.nl/SSAdescription.pdf
Number Theoretic Transform Multiply Example

- Number-theoretic transforms in the integers modulo 337 are used, selecting 85 as an 8th root of unity

- Base 10 is used in place of base 2^w for illustrative purposes

![Diagram showing number theoretic transform example](Image Credit: Wikipedia)

© 2018 Landon Curt Noll. This work may only be shared under the Creative Commons Attribution-ShareAlike 3.0 United States License.
Mersenne Test Revisited

• Start with a table of M(p) candidates (where p is prime)

• Look for small factors, tossing out those with factors that are not prime
 - Until the rate of tossing out candidates is slower than Lucas-Lehmer test rate

• For each M(p) remaining, perform the Lucas-Lehmer test
 - \(U_2 = 4 \) and \(U_{i+1} \equiv U_i^2 - 2 \mod M(p) \) until \(U_p \) is computed
 - Pad \(u_x \) with leading 0’s (at least p bits, more if required by Transform size)
 - Transform
 - Square each point
 - Inverse Transform
 - Divide real parts of points by point count and round to integers
 - Propagate carries
 - Subtract 2
 - Mod M(p) using “shift and add” method
 - If \(U_p \equiv 0 \) then M(p) is prime, otherwise it is not prime
EFF Cooperative Computing Awards

- $50 000 - prime number with at least 1 000 000 decimal digits
 - Awarded 2000 April 2

- $100 000 - prime number with at least 10 000 000 decimal digits
 - Awarded 2009 October 22

- $150 000 - prime number with at least 100 000 000 decimal digits
 - Unclaimed as of 2019 Apr 08

- $250 000 - prime number with at least 1 000 000 000 decimal digits
 - Unclaimed as of 2019 Apr 08

- BTW: Landon is on the EFF Cooperative Computing Award Advisory Board
 - And therefore Landon is NOT eligible for an award
 - Because Landon is an advisor, he will NOT give private advice to individuals seeking large primes
 - Landon does give public classes / lectures where the content + Q&A are open to anyone attending
EFF Cooperative Computing Awards II

• Funds donated by an anonymous donor to EFF

• Official Rules:
 - https://www.eff.org/awards/coop/rules
 - See also: https://www.eff.org/awards/coop/faq
 - Rules designed by Landon Curt Noll
 - See https://www.eff.org/awards/coop/primeclaim-43112609 for a valid claim

• Rule 4F: You must publish your proof in a refereed academic journal!
 - Your claim must include a citation and abstract of a published paper that announces the discovery and outlines the proof of primality. The cited paper must be published in a refereed academic journal with a peer review process that is approved by EFF.

• EFF Cooperative Computing Award Advisory Board
 - Landon Curt Noll (Chair), Simon Cooper, Chris K. Caldwell
 - Advisory Board members are not eligible to win an award
Questions for Part 1

1) Was M(4253) ever the largest known prime?
 - Hint: See slide 30

2) How do we know that $2^{1000000000}-1$ is not prime?
 - Hint: See slide 29

3) Should one try to factor M(p) before running the Lucas-Lehmer test?
 - Hint: think about when p is a large prime AND see slide 41

4) If a Lucas-Lehmer test of M(p) using Classical Squaring takes 1 hour, how long would it take to test M(x) where x is about 100*p?
 - Hint: See slides 40 & 41

5) If it took GIMPS 12 days to prove M(82589933) is prime, how long should it take them to test a Mersenne prime just large enough to claim the $150000 award?
 - Hint: M(332192831) has 100 000 007 digits
 - Hint: See slides 49, 65, 66 [[NOTE: M(332192831) is likely not prime]] [[NOTE: They used Transforms to Square]]

6) Prove that M(7) = $2^7-1 = 127$ is prime using the Lucas-Lehmer test
 - Hint: See slides 18, 19, 27, 28
Part 2 - Large Riesel Primes Faster

• $2^{31}-1$: Riesel Test: Searching sideways
• $2^{61}-1$: Pre-screening Riesel test candidates
• $2^{89}-1$: Multiply+Add in Linear Time
• $2^{127}-1$: Final Words and Some Encouragement
• $2^{521}-1$: Resources
While the Lucas-Lehmer test is the most efficient proof of primality known ...

... It is not the most efficient method to find a new largest known prime!

Why? Well ...

Mersenne Primes are rare
- Only 47 out of 43112609 Mersenne Numbers are prime
 - And even these odds are skewed (too good to be true), because of the pile of small Mersenne Primes
 - Only 7 of the 29260728 Mersenne numbers that are between 1 million to 10 million decimal digits in size, are prime
- As p grows, Mersenne Prime M(p) get even more rare

As p gets larger, the Lucas-Lehmer test with the best multiply worse than:
- O(p^2 ln p)
- Worse still, numbers may grow large with respect to memory cache
 - Busting the cache slows down the code
- The length of time to test will likely exceed the MTBF and MTBE
 - Mean Time Before Failure and Mean Time Before Error
- You must verify (recheck your test) and have someone else independently verify (3rd test)
 - So plan on the time to test the number at least 3 times!
- The GIMPS test for the 2018 largest known prime took 12 days
Advantages of Searching for $h*2^n-1$ Primes

• Riesel test for $h*2^n-1$ is almost as efficient as Lucas-Lehmer test for 2^p-1
 - Riesel test is about 10% slower than Lucas-Lehmer
 - When h is small enough ... but not too small
 - Test is very similar to Lucas-Lehmer so many of the performance tricks apply

• Testing $h*2^n-1$ grows as n grows - Avoid the exponential wall (go sideways)
 - Solution: pick a fixed value n and change only the value of h
 - Use odd values of $h < 2^n$ (if h in even, divide by 2 and increase n until h is odd)
 - A practical bound for h is: $2^n < h < 16^n$
 - Better still keep $2^n < h < \text{single precision unsigned integer}$ (on a 64-bit machine, this might be 2^{32} or 2^{64})
 - N may be selected to optimize the algorithm used to square large integers

• Pre-screening can eliminate >98.5% of candidates

• When $2^n < h < 2^n$ primes of the form $h*2^n-1$ are not rare like Mersenne Primes
 - They tend appear about as often as your average prime that is about the same size
 - Odds that $h*2^n-1$ is prime when $2^n < h < 2^n$ is about 1 in $2\ln(h*2^n-1)$
 - You can “guesstimate” the amount of time it will take to find a large prime
Mersenne Primes Dethroned

• 1989: $391581 \times 2^{216193} - 1$ 65087 digits Amdahl 6 using the Amdahl 1200
 - Only 37 digits larger than $M(216091)$ that was found in 1985
 - “Just a fart larger” - Dr. Shanks
 - BTW: The number we tested was really $783162 \times 2^{216192} - 1$

• Amdahl 6 team:
 - Landon Curt Noll, Gene Smith, Sergio Zarantonello, John Brown, Bodo Parady, Joel Smith

• Did not use the Lucas-Lehmer Test

• Squared numbers using Transforms
 - First use for testing non-Mersenne primes
 - First efficient use for small 1000 digit tests

Image Credit: Mrs. Zarantonello
Riesel Test for $h \cdot 2^n - 1$ is Lucas-Lehmer like

- $h \cdot 2^n - 1$ is prime if and only if odd $h < 2^n$, $h \cdot 2^n - 1$ not divisible by 3, and $U_n \equiv 0 \mod h \cdot 2^n - 1$
 - If h in even, divide by 2 and increase n until h is odd
 - $U_2 = V(h)$
 - We will talk about how to calculate $V(h)$ in the slides that follow
 - $U_{x+1} \equiv U_x^2 - 2 \mod h \cdot 2^n - 1$

- Differences from the Lucas-Lehmer test
 - Need to verify $h \cdot 2^n - 1$ is not a multiple of 3
 - The power of 2 does not have to be prime
 - We calculate mod $h \cdot 2^n - 1$ not mod $2^n - 1$
 - U_2 depends on $V(h)$ and is not always 4

7 is prime

Example code for Riesel Test

• Example code for Riesel Test:
 - Source code contains lots and lots of comments with lots of references to papers - worth reading!
 - NOTE: Only use this code as a guide, calc by itself is not intended to find a new largest known prime
 - https://github.com/arcetri/gmprime
 - Written in C
 - Implements the algorithm of http://www.isthe.com/chongo/src/calc/lucas-calc
 - A potential code base from which to start optimization
 - Uses GMU MP
 - Extensive test code
 - Had debugging options
 - https://github.com/arcetri/goprime
 - A potential code base from which to start optimization
 - Once version written in go benchmarks several square methods
 - One version written in C that uses flint: http://www.flintlib.org
 - http://jpenne.free.fr/index2.html
 - LLR code implements Riesel test

The Ulan spiral
Prior to finding U(2) - Riesel test setup

• Pretest: Verify \(h \times 2^n - 1 \) is not a multiple of 3
 - Do not test if \((h \equiv 1 \mod 3 \ \text{AND} \ n \text{ is even}) \) \ OR \((h \equiv 2 \mod 3 \ \text{AND} \ n \text{ is odd}) \)
 - This pretest is mandatory when \(h \) is not a multiple of 3
 - No need to test \(h \times 2^n - 1 \) because in this case 3 is a factor!

• Test only odd \(h \)
 - Only test odd \(h \), ignore even \(h \)
 - One can always divide \(h \) by 2 and add one to 1 until \(h \) becomes odd

• Riesel test requires \(h < 2^n \)
 - We recommend using odd \(h \) in this range: \(2^n < h < 16^n \)
Calculating $U(2)$ when h is not a multiple of 3

• Pretest: Verify that $h \cdot 2^n - 1$ is not a multiple of 3
 - Do not test if $(h \equiv 1 \mod 3 \ \text{AND} \ n \text{ is even}) \ \text{NOR} \ \text{if} \ (h \equiv 2 \mod 3 \ \text{AND} \ n \text{ is odd})$

• Note that we are considering only the case when h is odd
 - For even h, divide h by 2 and add one to 1 until h becomes odd

• Start with:
 - $V(0) = 2$
 - $V(1) = 4$ (NOTE: $V(1) = 4$ always works when h is not multiple of 3)

• Compute $V(h)$ using these recursion formulas:
 - $V(i+1) = [V(1) \cdot V(i) - V(i-1)] \mod h \cdot 2^n - 1$
 - $V(2i) = [V(i)^2 - 2] \mod h \cdot 2^n - 1$
 - $V(2i+1) = [V(i) \cdot V(i+1) - V(1)] \mod h \cdot 2^n - 1$

• $U(2) = V(h)$
Calculating $U(2)$ when h is a multiple of 3

- Pretest: Verify that $h*2^n-1$ is not a multiple of 3
 - Do not test if $(h \equiv 1 \mod 3 \text{ AND } n \text{ is even})$ NOR
 if $(h \equiv 2 \mod 3 \text{ AND } n \text{ is odd})$

- Note that we are considering only the case when h is odd
 - For even h, divide h by 2 and add one to 1 until h becomes odd

- Start with:
 - $V(0) = 2$
 - $V(1) = X > 2$ where $\text{Jacobi}(X-2, h*2^n-1) = 1$
 and where $\text{Jacobi}(X+2, h*2^n-1) = -1$
 - $\text{Jacobi}(a,b)$ is the Jacobi Symbol
 - See "A note on primality tests for $N = h*2^n-1"

 An excellent 5 page paper by Öystein J. Rødseth,
 Department of Mathematics, University of Bergen,
 https://link.springer.com/article/10.1007/BF01935653

- Compute $V(h)$ using these recursion formulas:
 - $V(i+1) = [V(1)*V(i) - V(i-1)] \mod h*2^n-1$
 - $V(2*i) = [V(i)^2 - 2] \mod h*2^n-1$
 - $V(2*i+1) = [V(i)*V(i+1) - V(1)] \mod h*2^n-1$

- $U(2) = V(h)$
Calculating the Jacobi symbol is easy

• Pre-condition: b must be an odd (i.e., \(b \equiv 1 \mod 2\)) and \(0 < a < b\)

 • \text{Jacobi}(a,b) \{
 j := 1
 \text{while (a is not 0) \{ }
 \text{while (a is even) \{ }
 a := a / 2
 \text{if ((b \equiv 3 \mod 8) or (b \equiv 5 \mod 8)) }
 j := - j
 \}
 \text{temp := a; a := b; b := temp} \quad // \text{exchange a and b}
 \text{if ((a \equiv 3 \mod 4) and (b \equiv 3 \mod 4))}
 j := - j
 a := a \mod b
 \}
 \text{if (b is 1)}
 \text{return j}
\text{else}
 \text{return 0}
\}
How to find V(1) when h is a multiple of 3

• Try these values of X in the following order:
 - 3, 5, 9, 11, 15, 17, 21, 27, 29, 35, 39, 41, 45, 51, 57, 59, 65, 69, 81
 - Search the list for X where Jacobi(X-2, h*2^n-1) = 1 and Jacobi(X+2, h*2^n-1) = -1
 Set V(1) to the first value of X that satisfies
 - Fewer than 1 out of 1000000 cases, when h is an odd multiple of 3, are not satisfied by the above list

• If none of those values work for V(1), start testing odd values at 83
 - Find first odd X ≥ 83 where Jacobi(X-2, h*2^n-1) = 1 and Jacobi(X+2, h*2^n-1) = -1

• An implementation of this method using C & GNU MP:
 - https://github.com/arcetri/gmprime
How to find \(V(1) \) when \(h \) is NOT a multiple of 3

- To speed up generating \(U(2) = V(h) \), we need to find a small \(V(1) \)

- If \(h \) is odd and not a multiple of 3, and
 - if \(\text{Jacobi}(1, h^{2^n} - 1) = 1 \) and \(\text{Jacobi}(5, h^{2^n} - 1) = -1 \) then
 - \(V(1) = 3 \)
 - else
 - \(V(1) = 4 \)

- 40% of \(h^{2^n} - 1 \) values can use a \(V(1) \) value of 3
 - 4 always works for \(h^{2^n} - 1 \) when \(h \) is not a multiple of 3

- An implementation of this method using C & GNU MP:
 - https://github.com/arcetri/gmprime
Riesel Test example: $7*2^5-1 = 223$

- $7*2^5-1$ is prime if and only if $7 < 2^5$ and $U_5 \equiv 0 \mod 7*2^5-1$
 - $V(0) = 2$
 - $V(1) = 3$ (because $\text{Jacobi}(1,223) = 1$ and $\text{Jacobi}(5,223) = -1$, we could also use 4 because $h=7$ is not a multiple of 3)
 - $V(i+1) = [V(1)*V(i) - V(i-1)] \mod h*2^n-1$
 - $V(2*i) = [V(i)^2 - 2] \mod h*2^n-1$
 - $V(2*i+1) = [V(i)*V(i+1) - V(1)] \mod h*2^n-1$

- Calculating $V(7)$ from $V(0)$ and $V(1)$
 - $V(0) = 2$
 - $V(1) = 3$ (because $\text{Jacobi}(1,223) = 1$ and $\text{Jacobi}(5,223) = -1$, see the previous slide)
 - $V(2) = [V[1]^2 - 2] \mod 223 = 7$
 - $V(4) = [V[2]^2 - 2] \mod 223 = 47$
 - $V(5) = [V(1)*V(4) - V(3)] \mod 223 = 123$
 - $V(6) = [V(1)*V(5) - V(4)] \mod 223 = 99$
 - $V(7) = [V(1)*V(6) - V(5)] \mod 223 = 174$
Riesel Test example: $7 \cdot 2^5 - 1 = 223$

- $7 \cdot 2^5 - 1$ is prime if and only if $7 < 2^5$ and $U_5 \equiv 0 \pmod{7 \cdot 2^5 - 1}$
 - $U_2 = V(h)$
 - $U_{x+1} \equiv U_x^2 - 2 \pmod{h \cdot 2^n - 1}$

- Riesel test: $7 \cdot 2^5 - 1 = 223$

- $U_2 = V(7) = 174$

- $U_3 = 174^2 - 2 = 30274 \pmod{223} \equiv 169$

- $U_4 = 169^2 - 2 = 28559 \pmod{223} \equiv 15$

- $U_5 = 15^2 - 2 = 223 \pmod{223} \equiv 0$

- Because $U_5 \equiv 0 \pmod{223}$ we know that $7 \cdot 2^5 - 1 = 223$ is prime
Calculating mod \(h*2^{n-1} \)

- Very similar to the “shift and add” method for mod \(2^n-1 \)

- Split the value into two chunks:

\[
U_x^{2-2} = \begin{array}{c|c|c}
J & K \end{array}
\]

\(n \) bits long

- Then \(U_x^{2-2} \mod h*2^n-1 \equiv \text{int}(J/h) + (J \mod h)*2^n + K \)

- If \(\text{int}(J/h) + (J \mod h)*2^n + K > h*2^n-1 \) then repeat the above

- Mod \(h*2^n-1 \) can be done in \(O(d) \) steps
Keep h single precision, but not too single!

• Calculating mod h*2^n-1 requires computing: int(J/h) + (J mod h)*2^n + K
 - K is the first n bits, J is everything beyond the first n bits:

\[U_{x^2-2} = \begin{array}{c|c}
J & K \\
\end{array} \text{ n bits long} \]

• Calculating int(J/h) and (J mod h) takes more time for double precision h
 - keep h < 2^{63} (when testing on a 64-bit machine)

• Do NOT make h too small!
 - primes of the form h*2^n-1 tend to be rare when h is tiny
 - Keep 2*n < h
 - But not too much greater than 2*n to avoid double precision mod speed issues
 - For example, keep: 2*n < h < 16*n
2^{61}-1: Pre-screening Riesel Test Candidates

- Eliminate $h*2^n-1$ values that are a multiple of small primes
 - Avoid testing large values are “obviously” not prime

- We will use **sieving techniques** to quickly find multiples of small primes

- In order to understand these **sieving techniques** ...
 - Let first look in detail, of how to use the “Sieve of Eratosthenes” to find tiny primes
 - Then we will apply these ideas to quickly eliminate Riesel candidates that are multiple or small primes
The Sieve of Eratosthenes

• Sieve the integers
 - Given the integers:
 • 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 ...
 - Ignore 1 (we define it as not prime)
 • 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 ...
 - The next unmarked number is prime .. 2
 • 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 ...
 - .. cancel every 2nd value after that
 • 1 2 3 X 5 X 7 X 9 X 11 X 13 X 15 X 17 X 19 X 21 X 23 X 25 X 27 X 29 X 31 X ...
 - The next value remaining, 3, is prime so mark it and cancel every 3rd value after that
 • 1 2 3 4 5 X 7 8 X 10 11 X 13 14 X 16 17 X 19 20 X 22 23 X 25 26 X 28 29 X 31 32 ...
 - And the same for 5
 • 1 2 3 4 5 X 6 7 8 9 X 11 12 13 14 X 16 17 18 19 X 21 22 23 24 X 26 27 28 29 X 31 32 ...
 - And 7 NOTE: Our list ends before 7^2 = 49, so the mark remaining values as prime
 • 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 ...
When the List does NOT Start with 1

• We can sieve over a segment of that integers that does not start with 1
 - Consider this list:
 • 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 ...
 - Start with 1st prime: 2, find the first multiple of 2, cancel it & every 2nd value
 • 1X0 101 1X2 103 1X4 105 1X6 107 1X8 109 1X0 111 1X2 113 1X4 115 1X6 117 1X8 119 1X0 121 ...
 - 2nd prime: 3, find the first multiple of 3, cancel it & every 3rd value
 • 100 101 1X2 103 104 1X5 106 107 1X8 109 110 1X1 112 113 1X4 115 116 1X7 118 119 1X0 121 ...
 - 3rd prime: 5, find the first multiple of 5, cancel it & every 5th value
 • 1X0 101 102 103 104 1X5 106 107 108 109 1X0 111 112 113 114 1X5 116 117 118 119 1X0 121 ...
 - 4th prime: 7, find the first multiple of 7, cancel it & every 7th value
 • 100 101 102 103 104 1X5 106 107 108 109 1X0 111 112 113 114 1X5 116 117 118 1X9 120 121 ...
 - 5th prime 11, find the first multiple of 11, cancel it & every 11th value
 • 100 101 102 103 104 105 106 107 108 109 1X0 111 112 113 114 115 116 117 118 119 120 1X1 ...

- Because our list ends before \(13^2 = 169\), the rest are prime
 • 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 ...
Skipping the Even Numbers While Sieving

• When not starting at 1, we can ignore the even numbers and it still works
 - Consider this list:
 • 101 103 105 107 109 111 113 115 117 119 121 123 125 127 129 131 133 135 137 139 141 ...
 - No need to eliminate 2’s since the values are all odd
 - Start with 3, find the first multiple of 3, cancel it & every 3rd
 • 101 103 1X5 107 109 1X1 113 115 1X7 119 121 1X3 125 127 1X9 131 133 1X5 137 139 1X1 ...
 - 5: find the first multiple of 5, cancel it & every 5th value
 • 101 103 1X5 107 109 111 113 1X5 117 119 121 123 1X5 127 129 131 133 1X5 137 139 141 ...
 - 7: find the first multiple of 7, cancel it & every 7th value
 • 101 103 1X5 107 109 111 113 115 117 1X9 121 123 125 127 129 131 1X3 135 137 139 141 ...
 - 11: find the first multiple of 11, cancel it & every 11th value
 • 101 103 105 107 109 111 113 115 117 119 1X1 123 125 127 129 131 133 135 137 139 141 ...
 - Because our list ends before $11^2 = 169$, the rest are prime
 • 101 103 105 107 109 111 113 115 117 119 121 123 125 127 129 131 133 135 137 139 141 ...
Sieving Over an Arithmetic Sequence

- Consider the following arithmetic sequence
 - We will use the sequence $10^x + 1$
 - None of the values are multiples of 2, so 3: find the first multiple of 3, cancel every 3rd
 - 101 111 121 131 141 151 161 171 181 191 201 211 221 231 241 251 261 271 281 291 301 ...
 - None of the values are multiples of 5, so 7: find the first multiple of 7, cancel every 7th
 - 101 111 121 131 141 151 161 171 181 191 201 211 221 231 241 251 261 271 281 291 301 ...
 - 11: find the first multiple of 11, cancel it & every 11th value
 - 101 111 121 131 141 151 161 171 181 191 201 211 221 231 241 251 261 271 281 291 301 ...
 - 13: find the first multiple of 13, cancel it & every 13th value
 - 101 111 121 131 141 151 161 171 181 191 201 211 221 231 241 251 261 271 281 291 301 ...
 - 17: find the first multiple of 17, cancel it & every 17th value
 - 101 111 121 131 141 151 161 171 181 191 201 211 221 231 241 251 261 271 281 291 301 ...

- Because our list ends before $19^2 = 361$, the rest are prime
 - 101 111 121 131 141 151 161 171 181 191 201 211 221 231 241 251 261 271 281 291 301 ...
Sieving Over a Sequence of Riesel Sequence

• For a given n, as h increases, h*2^n-1 is an arithmetic sequence

 - Consider h*2^5-1 for increasing h, all of which are odd so we need not sieve for 2
 - 1*2^5-1=31 2*2^5-1=63 3*2^5-1=95 4*2^5-1=127 5*2^5-1=159 6*2^5-1=191 7*2^5-1=223 8*2^5-1=255 9*2^5-1=287

 - 3: find the first multiple of 3, and then cancel every 3rd
 - 1*2^5-1=31 2*2^5-1=63 3*2^5-1=95 4*2^5-1=127 5*2^5-1=159 6*2^5-1=191 7*2^5-1=223 8*2^5-1=255 9*2^5-1=287

 - 5: find the first multiple of 5, cancel it, and then cancel every 5th value
 - 1*2^5-1=31 2*2^5-1=63 3*2^5-1=95 4*2^5-1=X 5*2^5-1=127 6*2^5-1=159 7*2^5-1=191 8*2^5-1=223 9*2^5-1=255

 - 7: find the first multiple of 7, cancel it, and then cancel every 7th value
 - 1*2^5-1=31 2*2^5-1=X 3*2^5-1=95 4*2^5-1=127 5*2^5-1=159 6*2^5-1=191 7*2^5-1=223 8*2^5-1=255 9*2^5-1=287

 - 11: find the first multiple of 11 .. there is none in this list, so skip it

 - 13: find the first multiple of 13 .. there is none in this list, so skip it

 - Because our list ends before 17^2 = 289, the rest are prime

• Sieving a Riesel Sequence is not useful for finding a large prime

 - It helps quickly identify Riesel numbers that are NOT prime so we won’t waste time on them

• Now let return to the quickly eliminating multiples of small primes ...
Pre-screening Riesel Candidates by Sieving

• Given an arithmetic sequence of Riesel numbers: $h \cdot 2^n - 1$
 - for $2^n < h < 16 \cdot n$

• Our list (an arithmetic sequence) to candidates becomes:
 - $(2n+1) \cdot 2^n - 1$ $(2n+2) \cdot 2^n - 1$ $(2n+3) \cdot 2^n - 1$ $(2n+4) \cdot 2^n - 1$... $(16n-1) \cdot 2^n - 1$

• Build an array of bytes: $c[0]$ $c[1]$.. $c[2 \cdot n]$ $c[2 \cdot n+1]$.. $c[16 \cdot n-1]$
 - Where $c[h]$ represents the candidate: $h \cdot 2^n - 1$
 - Initially set $c[0]$.. $c[2 \cdot n] = 0$ as these values have too small of an h to be useful
 - $c[0] = 0 \cdot 2^n - 1 = 0$ does not need to be primality tested
 - $c[1] = 1 \cdot 2^n - 1$ is a mersenne number, might need to be primality tested, but is unlikely to be prime and isn't when n is not prime
 - Set $c[2 \cdot n+1]$.. $c[16 \cdot n-1] = 1$
 - These Riesel candidates have a $2^n < h < 16 \cdot n$

• For each test factor Q, **find the first element**, $c[X]$, that is a multiple of Q
 - See the next slide for how we find the first element, $X \cdot 2^n - 1$, that is a multiple of Q

• Clear $c[X]$ and clear every Q-th element just like we did those sieve examples
 - for $y=X; y < 16 \cdot n; y += Q$ { $c[y] = 0;$ } /* these values are multiples of Q and therefore not prime */
How to Find the First Element that is Multiple of Q

• How to find the first X where X*2^n-1 is a multiple Q
 - We assume that Q is odd
 - Since X*2^n-1 is never even, one never needs to consider even values of Q

• Let R = 2^n mod Q
 - See the next 3 slides for how to compute R

• Let S = Modular multiplicative inverse of R mod Q
 - https://en.wikipedia.org/wiki/Modular_multiplicative_inverse
 - https://rosettacode.org/wiki/Modular_inverse#C
 - See 4 slides down for how we compute the modular multiplicative inverse

• Then the first h where h*2^n-1 is a multiple Q is: S*2^n-1
 - Sieve out c[S], c[S+Q], c[S+(2*Q)], c[S+(3*Q)], c[S+(4*Q)], c[S+(5*Q)], …
 - These are all multiples of Q and therefore cannot be prime
How to Quickly Compute $R = 2^n \mod Q$

• One can quickly compute $R = 2^n \mod Q$ by modular exponentiation

• Observe that:
 - If $y = 2^x \mod Q$
 - then $2^{(2x)} \mod Q = y^2 \mod Q$ (the 0-bit case)
 - and $2^{(2x+1)} \mod Q = 2*y^2 \mod Q$ (the 1-bit case)
Minimize the 1-bits in n for Speed’s Sake!

• Note that computing $R = 2^n \mod Q$ is faster when n, in binary, has fewer 1 bits

• For each 0-bit in n:
 - square and mod

• For each 1-bit in n:
 - square, multiply by 2, then mod

• It is best to minimize the number of 1-bits in n
 - Choose an n that is a small multiple of a power of 2
 - Such values of n have lots of 0-bits at the bottom
The Modular Exponent Trick - Small Example

• Compute $R = 2^{117} \mod 3391$
 - In the example, we are pre-screening candidates of the form $h \cdot 2^n - 1$, where $n = 117$
 - We show how to compute $R = 2^{117} \mod Q$, where $Q = 3391$ is an example test factor

• The exponent of 2, in binary, is 117: 1110101, we start with some leading bits
 - We start with on the leading 3 bits just for purposes of illustration
 - On CPUs with w-bit words, you should start with the w leading bits

 2^7: Start with the leading bits where we can raise 2 to that power
 - Raise 2 to the leading 3 bits and mod: $2^7 \mod 3391 \equiv 128$

 2^{14}: Next bit in the exponent, 1110101 is 0:
 - 0-bit: square and mod: $128^2 \mod 3391 \equiv 2820$

 2^{29}: Next bit in the exponent, 1110101 is 1:
 - 1-bit: square, multiply by 2, then mod: $2 \cdot 2820^2 \mod 3391 \equiv 1010$

 2^{58}: Next bit in the exponent, 1110101 is 0:
 - 0-bit: square and mod: $1010^2 \mod 3391 \equiv 2800$

 2^{117}: Next bit in the exponent, 1110101 is 1:
 - 1-bit: square, multiply by 2, then mod: $2 \cdot 2800^2 \mod 3391 \equiv 16$

• Thus $R = 2^{117} \mod 3391 \equiv 16$

• While computing $R = 2^n \mod Q$, the largest value encountered is $< 2 \cdot Q^2$
How to find the Modular Multiplicative Inverse of R mod Q

• /*
 * mul_inv - Modular Multiplicative Inverse
 *
 * given:
 * R an integer
 * Q an integer > 0 and where gcd(R,Q) = 1
 * (i.e., R and Q have no common prime factors)
 *
 * returns:
 * S = Modular Multiplicative Inverse of R mod Q
 */
 int
 mul_inv(int R, int Q)
 {
 int Q0 = Q, t, q;
 int x0 = 0, S = 1;
 if (Q == 1) return 1;
 while (R > 1) {
 q = R / Q;
 t = Q; Q = R % Q; R = t;
 t = x0; x0 = S - q * x0; S = t;
 }
 if (S < 0) S += Q0;
 return S;
 }
How Deep Should we Sieve? A Practical Answer

• Sieve Riesel candidates until the time between sieve eliminations becomes longer than the time it takes to run a Riesel Test
 - When it takes longer for the sieve to turn a c[y] from 1 to 0, just do Riesel tests

• From experience: Sieve screening can eliminate >98.5% of candidates

• NOTE: If you happen to sieve for a small non-prime, you just waste time
 - You simply just won’t eliminate c[y] values that haven't already been eliminated

• However the work to determine of Q is prime may waste too much time! So how much work is OK?
 - Start sieving array of odd Q values while simultaneously sieving Riesel candidates with Q’s that remain standing
 - When the time it takes to eliminate an odd Q is longer than the time to do a single sieve of Riesel candidates, stop sieving Q values and just Sieve Riesel candidates
Riesel Test Revisited

• Pick large n and start with a table of $h \cdot 2^n - 1$ where $2^n < h < \text{limit}$
 - Where limit is less than the word size (say $h < 2^{32}$ or $h < 2^{64}$)
 - Start with some practical range for h, say: $2^n < h < 16^n$

• Look for small factors by sieving, tossing out those with factors of small primes

• For each $h \cdot 2^n - 1$ remaining, perform the Riesel test (almost as fast as the Lucas-Lehmer)
 - $U_2 = V(h)$ and $U_{x+1} \equiv U_x^2 - 2 \mod h \cdot 2^n - 1$ until U_n is computed
 - Pad U_x with leading 0’s (at least p bits, more if required by Transform size)
 - Transform
 - Square each point
 - Inverse Transform
 - Round to integers and/or normalize as needed
 - Propagate carries
 - Subtract 2
 - Mod $h \cdot 2^n - 1$ using a slightly more involved “shift and add” method
 - If $U_p \equiv 0$ then $h \cdot 2^n - 1$ is prime, otherwise it is not prime
Cray Records Return - Amdahl 6 lesson ignored

• 1992: M(756839) 227 832 digits Slowinski & Gage using the Cray 2
• 1994: M(859433) 258 716 digits Slowinski & Gage using the Cray C90
• 1995: M(1257787) 378 632 digits Slowinski & Gage using the Cray T94
GIMPS Record Era - Just testing 2^n-1

- Great Internet Mersenne Prime Search - Testing only Mersenne numbers (test $2^n -1$ only, not $h*2^n -1$)
 - https://www.mersenne.org
 - Woltman, Kurowski, et al. using Crandall’s Transform Square Algorithm

- 1996: M(1398269) 420 921 digits GIMPS + Armengaud
- 1997: M(2976221) 895 932 digits GIMPS + Spence
- 1998: M(3021377) 909 526 digits GIMPS + Clarkson
- 1999: M(6972593) 2 098 960 digits GIMPS + Hajratwala
 - $50 000$ Cooperative Computing Award winner - 1st known million digit prime

- 2001: M(13466917) 4 053 946 digits GIMPS + Cameron
- 2003: M(20996011) 6 320 430 digits GIMPS + Shafer
- 2004: M(24036583) 7 235 733 digits GIMPS + Findley
- 2005: M(25964951) 7 816 230 digits GIMPS + Nowak
- 2005: M(30402457) 9 152 052 digits GIMPS + Cooper *
- 2006: M(32582657) 9 808 358 digits GIMPS + Cooper *
- 2008: M(43112609) 12 978 189 digits GIMPS + Smith
 - $100 000$ Cooperative Computing Award winner - 1st known 10 million digit prime

- 2013: M(57885161) 17 425 170 digits GIMPS + Cooper *
- 2016: M(74207281) 22 338 618 digits GIMPS + Cooper *
- 2017: M(77232917) 23 249 425 digits GIMPS + Pace
- 2018: M(82589933) 24 862 048 digits GIMPS + Laroche

* no relation to Simon :)
To be Fair to GIMPS

• GIMPS stands for Great Internet Mersenne Prime Search

• GIMPS is about searching for Mersenne Primes Only

• While testing Riesel numbers $h \times 2^n - 1$ may be faster ...
 - Riesel testing is outside of their “charter” / purpose
2^{89}-1: Multiply+Add in Linear Time

• You can perform a n-bit multiply AND an n-bit add in 2*n clock cycles
 - If you have \(\lceil n/3 \rceil \) simple 11-bit state machines
 - \(\lceil n/3 \rceil \) mean n/3 rounded up to the next integer
 - See Knuth: Art of Computer Programming, Vol. 2, Section 4.3.3 E

• Calculates \(u \cdot v + q = a \)
 - The machine does a multiply and an add at the same time

• Can calculate \(U_n^2 - 2 \) in 2*n clock cycles
 - using \(\lceil n/3 \rceil \) simple 11-bit state machines

• Hardware can do the slightly more involved “shift and add” in parallel
 - With the machine that is computing \(U_x^2 - 2 \)

• Hardware can compute \(U_{n+1} \) in linear time!
11 bits of State in Each Machine

• Each state machine as 11 bits of state:
 - c, x0, y0, x1, y1, x, y, z0, z1, z2
 - All binary bits except for c which is a 2-bit binary value

• 0th state machine is special:
 - 3, 0, 0, 0, 0, u(t), v(t), 0, 0, q(t)
 - The input bits are feed into x—>u(t), y—>v(t), z2—>q(t)
 - c is always 3, the other bits are always 0

• 1st state machine’s z0 holds the answers at time t ≥ 1:
 - That z0 bit, at time t+1 holds bit t of the answer
 - answer bit of: a = u * v + q
Build an Array of State Machines

 - If u, v, q are n-bits you need $S[0]$ thru $S[\text{int}(n/3)+1]$
 - Initialize all state machine bits except $S[0]$ are set to 0

- On each clock all state machines except the 0th:
 - Receive 1 bit from the right, 3 bits from the left, and copy over 2 bits from the left

- At clock t, feed in bit t of the input (u, v, q) into the 0th state machine’s x, y, $z2$
 - When after the last input bit is fed, feed 0 bits

- Bit t of the answer is found in $z0$ of the 1st state machine at clock $t+1$
Simple State Machine Rules
These apply to all except left most machine

- On each clock, state machines compute \((z_2, z_1, z_0)\):
 - Obtain \(z_0\) from right neighbor (call it \(z_{0Rr}\))
 - Obtain \(x, y, z_2\) from left neighbor (call them \(x_L, y_L, z_{2L}\))
 - If \(c = 0\), \((z_2, z_1, z_0) = z_{0R} + z_1 + z_{2L} + (x_L \& y_L)\)
 - If \(c = 1\), \((z_2, z_1, z_0) = z_{0R} + z_1 + z_{2L} + (x_0 \& y_L) + (x_L \& y_0)\)
 - If \(c = 2\), \((z_2, z_1, z_0) = z_{0R} + z_1 + z_{2L} + (x_0 \& y_L) + (x_L \& y_0) + (x_1 \& y_1)\)
 - If \(c = 3\), \((z_2, z_1, z_0) = z_{0R} + z_1 + z_{2L} + (x_0 \& y_L) + (x_L \& y_0) + (x_1 \& y) + (x \& y_1)\)
- \& means logical AND and + means add bits together into the 3 bit value \((z_2, z_1, z_0)\)

- On each clock, state machines copy from the left depending on \(c\):
 - If \(c = 0\), then copy \(x_0, y_0\) from left neighbor into \(x_0, y_0\)
 - If \(c = 1\), then copy \(x_1, y_1\) from left neighbor into \(x_1, y_1\)
 - If \(c > 1\), then copy \(x, y\) from left neighbor into \(x, y\)

- On each clock, state machine increment \(c\) until it reaches 3:
 - \(c = \) minimum of \((c+1, 3)\)
 - \(c\) is a 2-bit value
27.6 Million State Machine Array @ 100 GHz

• Multiply two 82.8 million bit numbers & add a 82.8 million bit digit number
 - In 0.00166 seconds!

• For Lucas-Lehmer or Riesel test:
 - Compute u*u + (-2)
 - Make u(t) = v(t) for all clocks
 - Add in the 2’s compliment of -2
 - A simple front-end circuit can perform the “shift & add” for the mod

• Current record (as of 2019 Apr 16) is a 82 589 933 digit prime took 12 days
 - Used GIMPS code from http://www.mersenne.org
 - PC with an Intel i5-6600 CPU

• At 100 GHz, this machine could Riesel test a record sized prime in 37.9 hours!
 - More than 7.6 times faster per test!
 - It is certainly possible to build an ASIC with an even faster internal clock
 - Method increases linearly O(n) as the exponent grows
 - O(n) is MUCH better than O(n ln n), so for larger tests, this method will eventually become even faster than FFTs in software!

• Of course, you would need multiple units to be competitive with GIMPS
2^{127}-1: Final Words and Some Encouragement

• Results (and records) goes to the first to calculate CORRECTLY ...
 - … not necessarily to the fastest tester

• A slow correct answer in infinitely better than a fast wrong answer!

• Compute smarter
 - You do NOT need to have the fastest machine to be the first to prove primality
 - My 8 world records related to prime numbers did NOT use the fastest machine

• Pre-mature optimization is the bane of a correctly running program
 - Write your comments first
 - Code something that works, updating comments as needed
 - Start that code running
 - Then incrementally improve the comments, improve the code & retest
 - Update the running code when you are confident it works

Image Credit: Flickr user Kaeru
Creative Commons License
Test, test and TEST!

• Don’t trust the CPU / ALU
 - Put in checksums to sanity check square
 - Put in checksums to sanity check mod
 - 2001 Intel Celeron CPU had a Mean Time Between Errors (MTBE) of only 37 weeks!

• Don’t trust the Memory or Memory management
 - Uniquely mark pages in memory
 - Check for bad page fetches

• Don’t trust the system
 - Checkpoint in the middle of calculations
 - Restart program at last checkpoint
 - Backup! Test your backups!
 - Checksum code and data tables!

• Confirm all primality tests
 - After a number is tested, recheck the result!
 - Compare final U_X values
 - Test on different hardware
 - Better still, use different code to confirm test results

Image Credit: Flickr user: flanker27
Creative Commons License
Most CPU cycles are NOT spent primality testing

• Expect to spend 1/3 or more of CPU time eliminating test candidates

• Expect to primality test each remaining test candidate at least twice

• Expect to spend 1/4 or more of CPU time in error checking

• Typically only 25% of CPU cycles will test a new prime candidate
 - \((100\% - 1/3) / 2) * (1 - 1/4) = 25\% \)

• You must verify (recheck your test) and have someone else independently verify (3rd test)
 - So plan on the time to test the number at least 3 times!

• While nothing is 100% error free:
 - Q: What is “mathematical truth”? A: The pragmatic answer:
 - Mathematical truth is something that the mathematical community has studied (peer reviewed) and has been shown to be true
Find a new largest known prime (> $2^{82589933} - 1$)

- Pick some n a bit larger than 82589933, say $n = 82837504$
 - If n as mostly 0 bits, the sieve (to eliminate potential candidates) goes faster
 - $n = 10011100000000000000000000$ in binary
 - Start with some practical range for h, say $165675008 < h < 1325400064$
 - $2 \times 82837504 < h < 16 \times 82837504$

- Look for small factors by sieving, tossing out those with factors that are not prime
 - Eliminate more than 98.5% of the candidates
 - before the sieve starts to take more time to eliminate a candidate than a prime test takes to run

- For each $h \times 2^{82837504} - 1$ remaining, perform the Riesel test
 - $U_2 = V(h)$ and $U_{x+1} \equiv U_x^2 - 2 \mod h \times 2^{82837504} - 1$ until $U_{82837504}$ is computed
 - Pad u_x with leading 0’s (at least p bits, more if required by Transform size)
 - Transform
 - Square each point
 - Inverse Transform
 - Round to integers
 - Propagate carries
 - Subtract 2
 - $\mod h \times 2^n - 1$ using a slightly more involved “shift and add” method
 - If $U_p \equiv 0$ then $h \times 2^{82837504} - 1$ is prime, otherwise it is not prime
Riesel tests to find a new largest known prime

• Odds of $h \cdot 2^{82837504} - 1$ prime ...
 - where $165675008 < h < 1325400064$
 - where $2 \cdot 82837504 < h < 16 \cdot 82837504$

• is about 1 in $2 \cdot \ln(h \cdot 2^{82837504} - 1)$
 - About 1 in $2 \cdot (\ln(h) + (82837504 \cdot \ln(2)))$
 - 1 in $107\,569\,027$ for h near 114837203
 - 1 in $107\,569\,032$ for h near 114837207

• Assume sieving eliminates >98.5% of the candidates

• Expect to perform about 1,613,535 Riesel tests of $h \cdot 2^{82837504} - 1$
Finding a new largest known prime

• Could one of us, or a team among us find a new largest known prime?
 - Yes!

• Focus on correctness of coding
 - Write code that runs correctly the first time
 • You don’t have time to rerun!

• Focus on error correction and detection
 - Don’t blindly trust hardware, firmware, operating system, system, drivers, compilers, etc.
 - Consider developing a tool to test newly manufactured hardware
 - Consider developing a tool that uses otherwise idle cycles

• Compute smarter
 - Hardware people: Consider building a fast multiply/add circuit
 - You do NOT need to use the fastest computer to gain a new world record!
 - Efficient networking between compute nodes will be key!
Don’t Become Discouraged

• As Dr. Lehmer was fond of saying:

 “Happiness is just around the corner”

• Don’t get discouraged
 - You are searching on a many-sided polygon - you just have to find the right corner

• Work in a small team
 - Make use of complimentary strengths

• Write your own code where reasonable
 - Have different team members check each other’s code
 - When you use outside code
 • Always start with the source
 • Study their code, check for correctness, learn that code so well that you could write it yourself
 - You might end up re-writing it once you really understand what their code does
And Above All …

• Could someone in this room find a new largest known prime?
 - Yes!

• You **CAN** find a new largest known prime!
 - Never let someone tell you, you can’t!

Image Credit:
Flickr user quinnums
Creative Commons License
2^{521}-1: Resources

• The Prime Pages:
 - https://primes.utm.edu/
 - https://primes.utm.edu/notes/by_year.html#3
 - https://primes.utm.edu/prove/index.html

• Amdahl 6 method for implementing the Riesel test:

• Transform resources and multiplication:
 - https://tonjanee.home.xs4all.nl/SSAdescription.pdf
 - http://www.flintlib.org
 - http://www.fftw.org/
 - http://www.apfloat.org/ntt.html
 - https://gmplib.org
 - https://arxiv.org/abs/0801.1416
 - https://www.daemonology.net/papers/fft.pdf
2^{521}-1: Resources II

• Riesel primality test code:
 - https://github.com/arcetri/gmprime
 - https://github.com/arcetri/goprime
 - http://jpenne.free.fr/index2.html

• Verified primes of the form h*2^n-1
 - https://github.com/arcetri/verified-prime

• GIMPS:
 - https://www.mersenne.org
 - https://www.mersenne.org/download/

• On English names of large numbers:

• Mersenne primes and the largest known Mersenne prime:

• Cooperative Computing Award:
 - https://www.eff.org/awards/coop
 - https://www.eff.org/awards/coop/rules

• Obtain a recent edition of Knuth’s:
 - The Art of Computer Programming, Volume 2, Semi-Numerical Algorithms: Especially Sections 4.3.1, 4.3.2, 4.3.3
Questions for Part 2

1) Why is it faster to search for a large prime of the form $h \times 2^n - 1$ than $2^p - 1$?
 - Hint: See 69, 70

2) Assume M(92798969) is proven prime, what would a good choice of n (exponent of 2) to use when searching for a new largest known prime?
 - Hint: 92798969 in binary is: 101100001111111111111111111001
 - Hint: See slides 92, 93, 94

3) How many state machines would it take to test $2^{15802117} \times 2^{77594624} - 1$?
 - Hint: See slides 101, 105

4) What types of error checking could help correctly find a new largest known prime?
 - Hint: See slides 106, 107

5) Prove that $19 \times 2^5 - 1 = 607$ is prime using the Riesel Test
 - Hint: $U(2) = V(19) = 52$
 - $V(1) = 3$ (although $V(1) = 4$ also works)
 - Hint: See slides 74, 75, 76, 80, 81
Bottom of talk.

Any Questions?

Thank you.

Landon Curt Noll
prime-tutorial-mail@asthe.com