"Two is a most odd prime because
Two is the least even prime."
-- Dr. Dan Jurca
"That's a big prime!"

A Grand Coding Challenge! Finding a new Largest Known Prime

The Great indoor sport of hunting for world record-sized prime numbers

Landon Curt Noll

prime-tutorial-mail@asthe.com
www.isthe.com/chongo
v1.85-2022 Apr 25
http://www.isthe.com/chongo/tech/math/prime/prime-tutorial.pdf

Agenda - Part 1 - Mersenne Primes

- Part 1.A \& 1.B - 75 minutes (09:00-10:15)
- $2^{2}-1$: What is a Prime Number?
- 23-1: 423+ Years of Largest known primes
- $2^{5}-1$: Factoring vs. Primality Testing

Image Credit: Flickr user forkergirl Creative Commons License

- 27-1: Lucas-Lehmer Test for Mersenne Numbers
- 213-1: The Mersenne Exponential Wall
- 217-1: Pre-screening Lucas-Lehmer Test Candidates
- 219-1: How Fast Can You Square?
- Part 1 Exercise and Quiz - 10 minutes (10:15-10:25)
- Discuss Part 1 Questions - 5 minutes (10:25-10:30)

Agenda - Break

- Break - 30 minutes (10:30-11:00)

Image Credit:
Flickr user Rajiv Patel (Rajiv's View) Creative Commons License

Agenda - Part 2 - Large Riesel Primes Faster

- Part 2-75 minutes (11:00-12:15)
- 231-1: Riesel Test: Searching sideways
- 261-1: Pre-screening Riesel test candidates
- 289-1: Multiply+Add in Linear Time

- $2^{127}-1$: Final Words and Some Encouragement
- 2521-1: Resources
- Part 2 Exercise and Quiz - 10 minutes (12:15-12:25)
- Discuss Part 2 Questions - 5 minutes (12:25-12:30)
- Optional Discussion / General Q\&A - As needed (12:30- TBD)

Part 1.A - Mersenne Primes

- $2^{2}-1$: What is a Prime Number?
- $2^{3}-1: 423+$ Years of Largest known primes
- $2^{5}-1$: Factoring vs. Primality Testing
- 27-1: Lucas-Lehmer Test for Mersenne Numbers

Some Notation

- Common assumption in many number theory papers:
- A variable is an integer unless otherwise stated
- $M(p)=2^{p-1}$
- p is often prime :-)

- The symbol ミ means "identical to"
- Think =
- Difference between = and \equiv is important to mathematicians
- The difference is not important to understand how to perform the test
- mod (short for modulus)
- Think "divide and leave the remainder"
$-5 \bmod 2 \equiv 1 \quad 14 \bmod 4 \equiv 2 \quad 21 \bmod 7 \equiv 0$

22-1: What is a Prime Number?

- A natural number ($1,2,3, \ldots$) is prime if and ONLY IF:
- it has only 2 distinct natural number divisors
- 1 and itself
- The first 25 primes:
- 2357111317192329313741434753596167717379838997 - There are 25 primes < 100
- 6 is not prime because: 2 * $3=6$
- $1,2,3$, and 6 are factors of 6 (i.e., 6 has 4 distinct natural number divisors)

Why is 1 not prime?

- Almost nobody on record defined 1 as prime until Stevin in 1585
- From the mid 18th century to the start of the 20th century
- There were many who called 1 a prime
- Today we commonly use definitions where 1 is not prime
- Fundamental theorem of arithmetic in commonly use today does not assume that 1 is prime
- Any natural number can be expressed as a unique (ignoring order) product of primes
- $1400=2$ * 2 * 2 * 5 * 5 * 7
- No other product of primes $=1400$
- If 1 were prime:
- $1400=2 * 2 * 2 * 5 * 5 * 7 * 1$
- $1400=2 * 2 * 2 * 5 * 5 * 7 * 1^{*} 1^{*} \ldots$
- Q: What is a "mathematical definition"? A: The pragmatic answer:
- .. something that the mathematical community agrees upon
- Q: What is a "mathematical truth"? A: The pragmatic answer:
- .. something that the mathematical community has studied and has been demonstrated to be true

What is the Largest Known Prime: ${ }^{282589933-1}$

- 24862048 decimal digits
- 4973 pages (100 lines, 50 digits per line)
- https://lcn2.github.io/mersenne-english-name/m82589933/prime-c.html
1,488,944,457,420,413,
- 255,478,064,584,723,979,166,030,262,739,927,953,241,852,712,894,252,132,393, - ... 436173 lines skipped here
- $557,947,958,297,531,595,208,807,192,693,676,521,782,184,472,526,640,076,912$,
- 114,355,308,311,969,487,633,766,457,823,695,074,037,951,210,325,217,902,591

Image by Matthew Harvey © 2003

- The English name for this prime is over 656 megabytes long:
- Double sided printing, 100 lines per side, requires over 82 reams (500 sheet per ream) of paper!
- https://lcn2.github.io/mersenne-english-name/m82589933/prime.html
- one octomilliamilliaduocenseptenoctoginmilliatrecenoctoquadragintillion,
- four hundred eighty eight octomilliamilliaduocenseptenoctoginmilliatrecenseptenquadragintillion,
- nine hundred forty four octomilliamilliaduocenseptenoctoginmilliatrecensexquadragintillion,
- ... 8280068 lines skipped here ...
- two hundred seventeen million,
- nine hundred two thousand,
- five hundred ninety one

There is No Largest Prime The Largest Known Prime Record can always be Broken!

- Assume there are finitely many primes (and 1 is not a prime)
- Let A be the product of "all primes"
- Let p be a prime that divides $\mathrm{A}+1$
- Since p divides A
- Because A is the product of "all primes"
- And since p divides A+1
- Therefore p must divide 1
- Which is impossible

What is a Mersenne Prime?

- Mersenne number: $2^{\mathrm{n}}-1$
- Examples: $2^{3}-1 \quad 2^{11-1} \quad 2^{67-1} \quad 2^{23209-1}$
- A Mersenne prime is a mersenne number that is prime
- Examples: $2^{3}-1 \quad 2^{23209-1}$
- Why the name Mersenne?
- Marin Mersenne: A 17th century french monk
- Mathematician, Philosopher, Musical Theorist
- Claimed when $p=2,3,5,7,13,17,19,31,67,127,257$ then $2^{\mathrm{P}}-1$ was prime
- $2^{61}-1$ proven prime in 1883 - was Mersenne's 67 was a typo of 61 ?
- $2^{67}-1=761838257287 \times 193707721$ in 1903 -Still a typo?

3 years of Saturdays for Cole to factor by hand: 147573952589676412927

- 289-1 proven prime in 1911-OK he missed one - 2nd strike
- 2107-1 proven prime in 1914-3rd strike - Forget it!
- After more than 300 years his name stuck

23-1: 423+ Years of Largest Known Primes

- Earliest explicit study of primes: Greeks (around 300 BCE)
- 1588: First published largest known primes
- Cataldi proved 131701 (2 $2^{17}-1$) \& 524287 (2 2^{19-1}) were prime
- Produced an complete table of primes up to 743
- Made an exhaustive factor search of $2^{17}-1 \& 2^{19}-1$

By hand, using roman numerals!

- Held the record for more than 2 centuries!

- 1772: Euler proved 2^{31-1} (2147483647) was prime
- A clever proof to eliminate almost all potential factors, trial division for the rest
- Euler said: " ${ }^{311}-1$ is probably the greatest (prime) that ever will be discovered ... it is not likely that any person will attempt to find one beyond it."
- 1867: Landry completely factored $2^{59}-1=179951$ * 3203431780337
- 3203431780337 was the largest known prime by the fundamental theorem of arithmetic
- By trial division after eliminating almost all potential factors

25-1: Factoring vs. Primality testing

- Factoring and Prime testing methods overlap only in the trivial case:

- Useful to test numbers with only a "handful of digits"
- 1951: Ferrier factored $2^{148}+1$ and proved that $\left(2^{148}+1\right) / 17$ was prime
- Using a desk calculator after eliminating most factor candidates
- Largest record prime, 44 digits, discovered without the use of a digital computer
- Largest "general" number factored in 2012 had only 320 digits
- Primes larger than 320 digits were discovered in 1952

1st Prime Records without Factoring, by Hand

- 1876: Édouard Lucas proved 2^{127}-1 was prime
- 170141183460469231731687303715884105727
- Édouard Lucas made significant contributions to our understanding of Fibonacci-like Lucas sequences
- Lucas sequences are the heart of the Lucas-Lehmer test for Mersenne Primes
- Lucas proved that $2^{127}-1$ had a property that only possible when $2^{\mathrm{P}}-1$ was prime

Pseudo-primality Tests

- Some mathematical tests are true when a number is prime
- A pseudo primality test
- A property that every prime number must pass ... however some non-primes also pass
- Fermat pseudoprime test
- If p is an odd prime, and a does not divide p, then $a^{(p-1)}-1$ is divisible by p
- Let: $\mathrm{p}=23$ and $\mathrm{a}=2$ which is not a factor of 23 , then $222-1=4194303$ and $23 * 182361=4194303$
- However 341 also passes the test
- for $\mathrm{a}=2: 2^{340}-1$ is divisible by 341 but $341=11$ * 31
- Passing a Pseudoprime test does NOT PROVE that a number is prime!
- Failing a Pseudoprime test only proves that a number is not prime
- There are an infinite number of Fermat pseudoprimes
- There are an infinite number of Fermat pseudoprimes that pass for every allowed value of "a"
- These are called Carmichael numbers

Lucas Sequences

- For a given P \& Q
- $\mathrm{U}_{0}=0 \quad \mathrm{U}_{1}=1 \quad \mathrm{U}_{\mathrm{n}}=\mathrm{P}^{*} \mathrm{U}_{n-1}-\mathrm{Q}^{*} \mathrm{U}_{\mathrm{n}-2} \quad$ for $n>1$
- $\mathrm{V}_{0}=2 \quad \mathrm{~V}_{1}=\mathrm{P} \quad \mathrm{V}_{n}=\mathrm{P}^{*} \mathrm{~V}_{\mathrm{n}-1}-\mathrm{Q}^{*} \mathrm{~V}_{\mathrm{n}-2} \quad$ for $n>1$
- Fibonacci Sequence - Lucas Sequence special case
- $P=1 \quad Q=-1 \quad U_{n}=P^{*} U_{n-1}-Q^{*} U_{n-2}$
- $\mathrm{U}_{0}=1 \quad \mathrm{U}_{1}=1 \quad \mathrm{U}_{\mathrm{n}}=\mathrm{U}_{\mathrm{n}-1}+\mathrm{U}_{\mathrm{n}-2}$
$-0,1,1,2,3,5,8,13,21,34,55,89,144, \ldots$
- Lucas Numbers - Useful for primality testing
$-P=1 \quad Q=-1 \quad V_{n}=P^{*} V_{n-1}-Q^{*} V_{n-2}$
- $\mathrm{V}_{0}=2 \quad \mathrm{~V}_{1}=1 \quad \mathrm{~V}_{\mathrm{n}}=\mathrm{V}_{\mathrm{n}-1}+\mathrm{V}_{\mathrm{n}-2}$
- 2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199,

Lucas Pseudo-primes

- If n is prime, then $\mathrm{V}_{\mathrm{n}} \bmod \mathrm{n}=1$
- $2,1,3,4,7,11,18,29,47,76,123,199, \ldots$
- However, $\mathrm{V}_{\mathrm{n}} \bmod \mathrm{n}=1$ for some n that are not prime:
- V_{705} \% $705=1$
- V_{2465} \% $2465=1$
- V_{2737} \% $2737=1$
- V_{3745} \% $3745=1$
- V_{4181} \% $4181=1$
- V_{5777} \% $5777=1$
- V_{6721} \% $6721=1$

$V(n)$	n	$V(\mathrm{n}) \% \mathrm{n}$
2	0	
1	1	
3	2	1
4	3	1
7	4	3
11	5	1
18	6	0
29	7	1
47	8	7
76	9	4
123	10	3
199	11	1
322	12	10
521	13	1
843	14	3
1364	15	14
2207	16	15
3571	17	1
5778	18	0
9349	19	1
15127	20	7
24476	21	11
39603	22	3
64079	23	1
103682	24	2
167761	25	11
271443	26	3
439204	27	22
710647	28	7
1149851	29	1
1860498	30	18
3010349	31	1

Jumping ahead in the Lucas Sequence

$V_{n}=V_{n-1}+V_{n-2}$
$V_{2 n}=V_{n}{ }^{2}-2$

- $\mathrm{V}_{2 n}$ grows to be huge!

n	$\mathbf{V}\left(2^{\wedge} \mathrm{n}\right)$	$\mathbf{2}^{\wedge} \mathbf{n}$
1	3	2
2	7	4
3	47	8
4	2207	16
5	4870847	32
6	23725150497407	64
7	562882766124611619513723647	128
8	316837008400094222150776738 483768236006420971486980607	256
9	100385689891921376688754239 992826256704879627683181901 515099398613465618884806971 304035121947368905594088447	512
10	100772867350770056609820080 610650730680744753004660124 446293884875747696521156517 635000261283676793017447903 659202787756017660002174559 979308098751086395045787668 536036255051626821777084330 23235042368022152858871807	1024

27-1: Lucas-Lehmer Test for Mersenne Numbers

- Some primality tests are definitive
- In 1930, Dr. D. H. Lehmer extended Lucas's work
- This test was the subject of Dr. Lehmer's Thesis
- Known as a Lucas-Lehmer test
- A definitive primality test
- The most efficient proof of primality known

Image Credit: Time-Life Magazine

- Work to prove primality vs. size of the number tested
- Theoretical argument suggests test may be the most efficient possible
- It was my honor and pleasure to study under Dr. Lehmer
- One of the greatest computational mathematicians of our time
- Like prime numbers, there will always be greater mathematicians :)
- Was willing to teach math to a couple of high school kids like me

Lucas Sequence for 2^{n}-1

- $\mathrm{S}_{2}=4$
- $S_{n+1}=S_{n}{ }^{2}-2$
- If p is odd prime, then for $m=2^{\mathrm{P}}-1$, if and only if $S_{m} \bmod m=0$, then m is prime!
- You don't need the exact value of S_{m} only S_{m} mod m

n	$U\left(2^{\wedge} n-1\right)$	$2^{\wedge} \mathbf{n}-1$	$\mathbf{U (2 \wedge} \mathbf{n}-1) \% 2^{\wedge} n-1$
1		1	
2	4	3	1
3	14	7	0
4	194	15	14
5	37634	31	0
6	1416317954	63	23
7	2005956546822746114	127	0
8	$\begin{aligned} & 4023861667741036022 \\ & 825635656102100994 \end{aligned}$	255	0
9	1619146272111567178 1777559070120513664 9585901254991585143 29308740975788034	511	0
10	2621634650492785145 2605936955756303921 3647877559524545911 9060053495557738312 3693501595628184893 3426999307982418664 9432769439016089193 96607297585154	1023	0

Lucas-Lehmer test *

- $\mathrm{M}(\mathrm{p})=2^{\mathrm{p}}-1$ is prime IF AND ONLY IF p is odd prime and $\mathrm{U}_{\mathrm{p}} \equiv 0 \bmod \left(2^{\mathrm{p}}-1\right)$
- Where $\mathrm{U}_{2}=4$
- and $U_{x+1} \equiv\left(U_{x}{ }^{2}-2\right) \bmod \left(2^{\mathrm{P}}-1\right)$

Image Credit: Wikipedia
Creative Commons License

* This is Landon Noll's preferred version of the test: others let $\mathrm{U}_{1}=4$ and test for $\mathrm{U}_{(\mathrm{p}-1)} \equiv 0 \bmod 2^{\mathrm{P}}-1$, and still others let $\mathrm{U}_{2}=4$ and test for $\mathrm{U}_{(\mathrm{p}-1)} \equiv 0 \bmod 2^{\mathrm{P}}-1$

Lucas-Lehmer Test - Mersenne Prime Test

- Mersenne prime test for $\mathrm{M}(\mathrm{p})=2^{\mathrm{p}}-1$ where p is an odd prime
- Let $\mathrm{U}_{2}=4$
- Repeat until U_{p} is calculated: $U_{i+1} \equiv\left(U_{x}{ }^{2}-2\right) \bmod \left(2^{p}-1\right)$
- Square the previous U_{i} term
- Subtract 2

Minor Planet 8191
$-\bmod \left(2^{\mathrm{P}}-1\right) \quad$ (divide by $2^{\mathrm{P}}-1$ and take the remainder) is named after Mersenne $8191=2^{13}-1$

(thow obit deyem)				
Orbital Eloments at Epoch 2vsswo.5 pov3-Ape 18...9) TD0 Retermer APL 4 pheliocentic ecliptio drose)			Ochert Devormin	asion Parameters 607
Elomen	- value	Uncertuinfl (6 -siomes) Units	datainespon	11302 dors pecer y
			lont obs uned	
S	22507105301240	1.3017eob AU	lastabe vied	20130700
9	201570129402638	1.204000 Al	planetay estem	Clas!
9	24atiowberneste	c.9006000 \quad \%09	Sapent.acter	semstavas
nose	3×2684034501531	0.00012003 \$09	condeion coso	\bigcirc
Den		$0.00013123 \quad \$ 00$	TRENS	Smm
4		3504605 ${ }^{0} 0$	dous soute	
5	2451014.056113505594	0.00012230 JC0	modicer	Oto Matic
	1244.02350813047	1.130005		
\cdots		2118068	Adsitio	Intormpt
	aspeezrsorwas	20056e-0s deodd	EMAh MO	= 1.028 Al
0	251170811380218	1.5331008 AU		-3009

Lucas-Lehmer Test Example.o

- Is $\mathrm{M}(5)=2^{5}-1=31$ prime?
- 5 is odd prime so according to the Lucas-Lehmer test:
- $2^{5}-1$ prime if and only if $U_{5} \equiv 0 \bmod 31$
- where $U_{2}=4$ and $U_{x+1} \equiv U_{x}{ }^{2}-2 \bmod 31$

Image Credit:
Flickr user duegnazio
Creative Commons License

- $\mathrm{U}_{2}=4$ (by definition)

Lucas-Lehmer Test Example. 1

- Is $\mathrm{M}(5)=2^{5}-1=31$ prime?
- 5 is prime so according to the Lucas-Lehmer test:
- $2^{5}-1$ prime if and only if $U_{5} \equiv 0 \bmod 31$
- where $U_{2}=4$ and $U_{x+1} \equiv U_{x}^{2}-2 \bmod 31$

Flickr user duegnazio
Creative Commons License

- $\mathrm{U}_{2}=4$ (by definition)
- $\mathrm{U}_{3}=4^{2}-2=$

Lucas-Lehmer Test Example. 2

- Is $\mathrm{M}(5)=2^{5}-1=31$ prime?
- 5 is prime so according to the Lucas-Lehmer test:
- $2^{5}-1$ prime if and only if $U_{5} \equiv 0 \bmod 31$
- where $U_{2}=4$ and $U_{x+1} \equiv U_{x}^{2}-2 \bmod 31$

Image Credit:
Flickr user duegnazio
Creative Commons License

- $\mathrm{U}_{2}=4$ (by definition)
- $\mathrm{U}_{3}=4^{2}-2=14 \bmod 31 \equiv$

Lucas-Lehmer Test Example. 3

- Is $\mathrm{M}(5)=2^{5}-1=31$ prime?
- 5 is prime so according to the Lucas-Lehmer test:
- $2^{5}-1$ prime if and only if $U_{5} \equiv 0 \bmod 31$
- where $U_{2}=4$ and $U_{x+1} \equiv U_{x}^{2}-2 \bmod 31$

Image Credit:
Flickr user duegnazio
Creative Commons License

- $\mathrm{U}_{2}=4$ (by definition)
- $\mathrm{U}_{3}=4^{2}-2=14 \bmod 31 \equiv 14$
- $\mathrm{U}_{4}=14^{2}-2=$

Lucas-Lehmer Test Example. 4

- Is $\mathrm{M}(5)=2^{5}-1=31$ prime?
- 5 is prime so according to the Lucas-Lehmer test:
- $2^{5}-1$ prime if and only if $U_{5} \equiv 0 \bmod 31$
- where $U_{2}=4$ and $U_{x+1} \equiv U_{x}^{2}-2 \bmod 31$

Image Credit:
Flickr user duegnazio
Creative Commons License

- $\mathrm{U}_{2}=4$ (by definition)
- $\mathrm{U}_{3}=4^{2}-2=14 \bmod 31 \equiv 14$
- $\mathrm{U}_{4}=14^{2}-2=194 \bmod 31 \equiv$

Lucas-Lehmer Test Example. 5

- Is $\mathrm{M}(5)=2^{5}-1=31$ prime?
- 5 is prime so according to the Lucas-Lehmer test:
- $2^{5}-1$ prime if and only if $U_{5} \equiv 0 \bmod 31$
- where $U_{2}=4$ and $U_{x+1} \equiv U_{x}^{2}-2 \bmod 31$

Image Credit:
Flickr user duegnazio
Creative Commons License

- $\mathrm{U}_{2}=4$ (by definition)
- $\mathrm{U}_{3}=4^{2}-2=14 \bmod 31 \equiv 14$
- $\mathrm{U}_{4}=14^{2}-2=194 \bmod 31 \equiv 8$
- $U_{5}=8^{2}-2=$

Lucas-Lehmer Test Example. 6

- Is $\mathrm{M}(5)=2^{5}-1=31$ prime?
- 5 is prime so according to the Lucas-Lehmer test:
- $2^{5}-1$ prime if and only if $U_{5} \equiv 0 \bmod 31$
- where $U_{2}=4$ and $U_{x+1} \equiv U_{x}{ }^{2}-2 \bmod 31$

Image Credit:
Flickr user duegnazio
Creative Commons License

- $\mathrm{U}_{2}=4$ (by definition)
- $\mathrm{U}_{3}=4^{2}-2=14 \bmod 31 \equiv 14$
- $\mathrm{U}_{4}=14^{2}-2=194 \bmod 31 \equiv 8$
- $\mathrm{U}_{5}=8^{2}-2=62 \bmod 31 \equiv$

Lucas-Lehmer Test Example. ${ }_{\text {т }}$

- Is $M(5)=2^{5}-1=31$ prime?
- 5 is prime so according to the Lucas-Lehmer test:
- $2^{5}-1$ prime if and only if $U_{5} \equiv 0 \bmod 31$
- where $U_{2}=4$ and $U_{x+1} \equiv U_{x}^{2}-2 \bmod 31$

Image Credit:
Flickr user duegnazio
Creative Commons License

- $\mathrm{U}_{2}=4$ (by definition)
- $\mathrm{U}_{3}=4^{2}-2=14 \bmod 31 \equiv 14$
- $\mathrm{U}_{4}=14^{2}-2=194 \bmod 31 \equiv 8$
- $\mathrm{U}_{5}=8^{2}-2=62 \bmod 31 \equiv 0$
- Because $U_{5} \equiv 0 \bmod 31$ we know that 31 is prime

Lucas-Lehmer Test Example II

- Is $M(11)=2^{11}-1=2047$ prime?
- 11 is prime so according to the Lucas-Lehmer test:
$-2^{11}-1$ prime if and only if $\mathrm{U}_{11} \equiv 0 \bmod 2^{11}-1$
- Calculating U11

```
- U2 = 4 (by definition)
- U3 = 4'-2= 14 mod 2047 \equiv 14
- U4 = 142-2= 194 mod 2047 \equiv 194
- U5 = 1942-2= 37634 mod 2047\equiv788
- U6 = 7882-2= 620942 mod 2047 \equiv 701
- U7 = 7012-2 = 491399 mod 2047 ミ 119
- U8 = 1192-2= 14159 mod 2047 \equiv 1877
- U9 = 18772-2 = 3523127 mod 2047 \equiv240
- U10 = 2402-2 = 57598 mod 2047 \equiv 282
- U11 = 282' - 2= 79522 mod 2047 \equiv 1736 <<== not 0 therefore 2047 is not prime (23 * 89 = 2047)
```


Primality Testing in the Age of Digital Computers

- 1951: Miller and Wheeler proved $180^{*}\left(2^{127}-1\right)^{2}+1$ prime using EDSAC1
- 5210644015679228794060694325390955853335898483908056458352183851018372555735221
- A 79 digit prime
- Using a specialized proof of primality
- 1952: Robison and Lehmer using the SWAC using the Lucas-Lehmer test
- 1952 Jan $30 \quad 2^{521}-1$ is prime
- 1952 Jan $30 \quad 2^{607}-1$ is prime
- 1952 June $25 \quad 2^{1279-1}$ is prime
- 1952 Oct $7 \quad 2^{2203}-1$ is prime
- 1952 Oct $9 \quad 2^{2281}-1$ is prime
- Robison coded the SWAC over the 1951 Christmas holiday

Image Credit: Flickr user skreuzer Creative Commons License

- By hand writing down the machine code as digits using only the SWAC manual
- Was Robison's first computer program he ever wrote
- Ran successfully the very first time!

Mersenne Prime Exponents must be Prime

- If $M(p)=2^{p}-1$ is prime, then p must be prime
- If x is not prime, then $M(x)=2^{x}-1$ is not prime
- Look at $\mathrm{M}(9) 2^{9}-1$ in binary
- 111111111
- We can rewrite $\mathrm{M}(9)$ as this product:
$\begin{array}{r}1001001 \\ \times \quad 111 \\ --------111 \\ \hline 1111111\end{array}$

Landon Curt Noll and the Palomar 200-inch telescope

- If $x=y$ * z
- then $M(x)$ has $M(y)$ and $M(z)$ as factors AND therefore $M(x)$ cannot be prime

Record Primes 1957-1961

- 1957: M(3217) 969 digits Riesel using BESK
- 1961: M(4423) 1332 digits Hurwitz \& Selfridge using IBM 7090
- The $\mathrm{M}(4423)$ was proven the prime same evening $\mathrm{M}(4253)$ was proven prime
- Hurwitz noticed $\mathrm{M}(4423)$ before $\mathrm{M}(4253)$ because the way the output was stacked
- Selfridge asked:
- "Does a machine result need to be observed by a human before it can be said to be discovered?"
- Hurwitz responded:
- "... what if the computer operator who piled up the output looked?"
- Landon believes the answer to Selfridge's question is yes
- Landon speculates that even if the computer operator looked, they very likely did not understand the meaning of the output:
- Therefore Landon (and many others) believe M(4253) was never the largest known prime

Record Primes at UIUC: 1963

- 1963: M(9668) 2917 digits Donald B. Gillies using the ILLIAC 2
- 1963: M(9941) 2993 digits Donald B. Gillies using the ILLIAC 2
- 1963: M(11213) 3376 digits Donald B. Gillies using the ILLIAC 2

Image Credits:
Department of Computer Science UIUC

- Largest known prime until:
- 1971: M(19937) 6002 digits Tuckerman using the IBM 360/91

Landon's Record Primes: 1978-1979

- 1978: M(21701) 6533 digits Noll \& Nickel using the CDC Cyber 174
- 1979: M(23209) 6987 digits Noll using the CDC Cyber 174

Image Credit: Landon Curt Noll

Landon 367 days before discovering M(21701) Green Cake Reads:
"CHONGO $2^{19937-1}$ is prime"

- 1st working version of the code took 500+ hours to test M(21001) on 1 April 1977
- The 1 Oct 1978 version took 7 hours, 40 minutes and 20 seconds to test $\mathrm{M}(21701)$
- Proven prime on 1978 Oct 30
- Searched M(21001) thru M(24499) using 6000+ CPU Hours on Cyber 174
- Used the facility account and much encouragement from Dr. Dan Jurca

Cray Record Primes

- 1979: M(44497) 13395 digits Nelson \& Slowinski using the Cray 1
- 1982: M(86243) 25962 digits Slowinski using the Cray 1
- 1983: M(132049) 39751 digits Slowinski using the Cray X-MP
- 1985: M(216091) 65050 digits Slowinski using the Cray X-MP/24

Image credit: Wikipedia Creative Commons License

Part 1.B - Mersenne Prime Search

- 213-1: The Mersenne Exponential Wall
- 217-1: Pre-screening Lucas-Lehmer Test Candidates
- 219-1: How Fast Can You Square?

213-1: The Mersenne Exponential Wall

- The Lucas-Lehmer Test for $M(p)$ requires computing $p-1$ terms of U_{i} :
- $\mathrm{U}_{\mathrm{i}+1} \equiv \mathrm{U}_{\mathrm{i}}{ }^{2}-2 \bmod 2^{\mathrm{P}}-1$
- That is $\mathrm{p}-1$ times performing ...
- Sub-step 1: square a number
- Sub-step 2: subtract 2
- Sub-step 3: mod 2P-1
- \ldots on numbers between 0 and $2^{\mathrm{P}}-2$
- On average numbers that are p bits long
- or $2 p$ bits when dealing with the result of the square

Sub-step 1: Square

- Consider this classical multiply:

- On the average a $\mathrm{d} x \mathrm{~d}$ digit multiply requires $\mathrm{O}\left(\mathrm{d}^{2}\right)$ operations:
- Products: d^{2}
- Adds: d^{2}

Sub-step 2: subtract 2

- This step is trivial
- On average requires 1 subtraction
- O(1) steps

Sub-step 3: mod 2p-1 by Shift and Add

- It turns out that this is easy too!
- Just a shift and add!
- Split $\mathrm{Ui}^{2}-2$ into two chunks and make low order chunk p bits long:

$$
\mathrm{Ui}^{2}-2=\begin{array}{|c|c|}
\hline \mathrm{J} & \mathrm{~K} \\
\hline
\end{array}
$$

- Then $\mathrm{U}^{2}-2 \bmod 2^{\mathrm{p}}-1 \equiv \mathrm{~J}+\mathrm{K}$
- If $\mathrm{J}+\mathrm{K}>2^{\mathrm{p}}-1$ then split again
- In this case the upper chunk will be 1 , so just add 1 to the lower chunk
- So mod $2^{\mathrm{P}}-1$ can be done in $\mathrm{O}(\mathrm{d})$ steps

Sub-step 3: mod 2p-1 - An Example

- Split L into two chunks and make low order chunk p bits long:


```
- For p=31, U22 = 1992425718
- }\mp@subsup{\textrm{U}}{22}{2}\mp@subsup{}{}{2}-2=3969760241747815522 =
    -11011100010111011010111110100000111100110110001110110001100010
                                    \longleftarrow}31\mathrm{ bits long
• J = 1101110001011101101011111010000
K = 0111100110110001110110001100010
J+K = 10101011000001111100010000110010
- Now J + K > 2 \(2^{31-1}\) so peel off the upper 1 bit and add it into the bottom 0101011000001111100010000110010
                                    1
0101011000001111100010000110011 = 721929267
- \(\mathrm{U}_{23}=\mathrm{U}_{22^{2}-2} \bmod 2^{31}-1=721929267\)
```


So Computing U(x)

- Sub-step 1: square requires $\mathrm{O}\left(\mathrm{p}^{2}\right)$ operations
- Sub-step 2: subtract requires $\mathrm{O}(1)$ operation
- Sub-step 3: mod $2^{\mathrm{p}}-1$ requires $\mathrm{O}(\mathrm{p})$ operations
- The time to square dominates over the time subtract and mod
- Computing U_{i} requires $O\left(p^{2}\right)$ operations
- We have to compute $\mathrm{p}-1$ terms of U_{i} to test $2^{\mathrm{P}}-1$
- The prime test is $\mathrm{O}\left(\mathrm{p}^{3}\right)$ operations

$\mathrm{O}\left(\mathrm{p}^{3}\right)$ doesn't Scale Nicely as P Grows

- If it takes a computer 1 day to test $\mathrm{M}(\mathrm{p})$
- 8 days to test $\mathrm{M}\left(2^{*} \mathrm{p}\right)$
- 4 months to test $\mathrm{M}\left(5^{*} \mathrm{p}\right)$
- 2.7 years to test $\mathrm{M}\left(10^{*} \mathrm{p}\right)$
- etc. !!!

217-1: Pre-screening Lucas-Lehmer Test Candidates

- Performing the Lucas-Lehmer test on $\mathrm{M}(\mathrm{p})$ is time consuming
- Even if it is very a very efficient definitive test given the size of the number testing
- Try to pre-screen potential candidates by looking for tiny factors
- If you find a small factor of $M(p)$ then there is no need to test
- It can be proven that a factor q of $M(p)$ must be of this form:
- $q \equiv 1 \bmod 8$ or $q \equiv 7 \bmod 8$
- $q=2^{*} k^{*} p+1$ for some integer $k>1$
- Factor candidates of $M(p)$ are either $4^{*} p$ or $2^{*} p$ apart
- When p is large, you can skip over a lot of potential factors of $M(p)$

Pre-screen Factoring Rule of Thumb

- For a given set of Mersenne candidates: M(a), M(b), ... M(z)
- Where z is not much bigger than a (say $a<z<a * 1.1$)
- Start factoring candidates until the rate of finding factors is slower than the LucasLehmer test for the M(z)
- Typically this rule of thumb will eliminate 50% of the candidates

219-1: How Fast Can You Square?

- The time to square dominates the subtract and mod
- So Mersenne Prime testing comes down to how fast can you square

Classical Square Slightly Faster Than Multiply

- Because the digits are the same on both, we can cut multiplies in half:

- On the average a $\mathrm{d} x$ d digit square requires $\mathrm{O}\left(\mathrm{d}^{2}\right)$ operations:
- Products: $\mathrm{d}^{2} / 2$
- Shifts: $\mathrm{d}^{2} / 2 \quad$ (shifts are faster than products)
- Adds: d²

Reduce Digits by Increasing Base

- No need to multiply base 10
- If a computer can ...
- Multiply two B bit words produce a 2*B product
- Divide 2*B bit double word by B bit divisor and produce B bit dividend \& remainder
- Add or Subtract B bit words and produce a B bit sum or difference
- ... then represent your digits in base 2^{B}
- Each B bit word will be a digit in base 2^{B}
- Test $M(p)$ requires p bit squares or p / B word squares
- Classical square requires $\mathrm{O}\left((\mathrm{p} / \mathrm{B})^{2}\right)$ operations
- The work still grows by the square of the digits $\mathrm{O}\left(\mathrm{d}^{2}\right)$

Squaring by Transforms

- Convolution Theorem states:
- The Transform of the ordinary product equals dot product of the Transforms
$-T\left(x^{*} y\right)=T(x) \cdot T(y)$
- $T(f o o)$ is the transform of foo
- While ordinary product is $\mathrm{O}\left(\mathrm{p}^{2}\right)$ the dot product is $\mathrm{O}(\mathrm{p})$!!!
- Dot product: a[0]*b[0] + a[1]*b[1] + a[2]*b[2] + + a[max]**[max]
- Multiplication by transform:
$-x^{*} y=\operatorname{TINV}(T(x) \cdot T(y))$
- TINV(foo) is the inverse transform of foo
- A Square by Transform can approach O(d In d)
- In d is natural log of d
- Scales much much better than $O\left(\mathrm{~d}^{2}\right)$

Squaring by Transform II

- Fast Fourier Transform (FFT)
- An example of a Transform where the Convolution Theorem holds
- There are more efficient Transforms for digital computers
- To compute A = X^{2}
- Step 1: Transform $X: Y=T(X)$
- Step 2: Compute dot product: $\mathrm{Z}=\mathrm{Y} \cdot \mathrm{Y}$
- Step 3: Inverse transform A = TINV(Z)

Image Credit: Flickr user jepoirrier Creative Commons License

- The prime test is $\mathrm{O}\left(\mathrm{p}^{2} \ln \mathrm{p}\right)$ operations with Transform Squaring
- In p is natural \log of p
- If it takes a computer 1 day to test $\mathrm{M}(\mathrm{p})$
- 2.7 days to test $M\left(2^{*} \mathrm{p}\right)$
- 40 days to test $\mathrm{M}\left(5^{*} \mathrm{p}\right)$
- 7.6 months to test $\mathrm{M}\left(10^{*} \mathrm{p}\right)$
(instead of 8 days)
(instead of 4 months)
(instead of 2.7 years)

Transform of an Integer?

Treat the integer as a wave:

- with bit value amplitude
- with time starting from low order bit to high order bit
- 01100101

- Assume that wave form is infinitely repeating:

- Convert that wave from time domain into frequency domain:
- Take the spectrum of the infinitely repeating waveform:

\longleftarrow I faked this graph :-)

Digital Transforms are Approximations

The effort to perform a perfect transform requires:

- Computing infinite sums with infinite precision
- Infinite operations are "Well beyond" the ability for finite computers to perform :-)
- Inverse Transform converts frequency domain ...

- ... back to time domain:
$\begin{array}{llllllll}-0.17 & 0.97 & 1.04 & -0.21 & -0.06 & 0.95 & -0.18 & 0.89\end{array}$
- Because of "rounding" approximation errors the result is not pure binary
- So we round to the nearest integer:
$\begin{array}{llllllll}-0 & 1 & 1 & 0 & 0 & 1 & 0 & 1\end{array}$
- These examples assumed a 8-point 1D transform

Pad with Zeros to Hold the Final Product

We need $2 n$ bits to hold the product of two n-bit values

- The Transform needs twice the points to hold the product

We add n leading 0's to our values before we multiply:
$\begin{array}{r}-0000000001100101 \\ \hline \quad \square \square\end{array}$

General Square Transform Algorithm

- To square p-bit value:
- Pad the value with p leading 0 bits
- Forms a 2*p-bit value: upper half 0's and lower half the value we wish to square]
- The transform may require a certain number of points
- Such as a power of two number of points
- If needed, pad additional 0's until the required number of points is achieved
- Perform the Transform on the padded value
- Convolve the signal in the transform space
- Dot product: Just 1 square for each transform point (not an n^{2} operation)

- Perform the Inverse Transform
- Divide the real part of each digit by the number of points and round to the nearest integer
- Propagate carries

FFT Square Example Output

- input: 0032
- freq: (-1.251,3.001i) (0.248,0.003i) (-1.250,-3.005i) (6.257,0.007i)
- After transform - FFT errors exaggerated for dramatic effect
- fft output: (0.091,-0.041i) (35.896,0.055i) (47.916,-0.127i) (16.183,0.127i)
- after square and inverse transform - FFT errors exaggerated for dramatic effect
- round to integers: (0,0i) $(36,0 i) \quad(48,0 i)(16,0 i)$
- extract reals: 0364816
- scale output: $0 \quad 9 \quad 124$
- Divide each cell by the initial number of cells
- After carries propagated: 1024

FFT Square Example Makefile

- Try the FFTW library:
- http://www.fftw.org/
- Makefile:
\# FFT square example using fftw
\#
\# See: http://www.fftw.org
\#
\# chongo (Landon Curt Noll) /\oo/\ -- Share and Enjoy! :-)
fftsq: fftsq.c
cc fftsq.c -lfftw3 -lm -Wall -o fftsq

FFT Square Example C Source.o

```
/*
    * FFT square example using fftw
    * See: http://www.fftw.org
    * chongo (Landon Curt Noll) /\oo/\ -- Share and Enjoy! :-)
    */
#define N 4 /* points in FFT */
/* digit arrays - least significant digit first */
long input[N] = { 2, 3, 0, 0 }; /* input integer, upper half 0 padded */
long output[N]; /* squared input */
#include <stdlib.h>
#include <math.h>
#include <fftw3.h>
#include <complex.h>
int
main(int argc, char *argv[])
{
```

```
complex *in; /* input as complex values */
```

complex *in; /* input as complex values */
complex *freq; /* transformed integer as complex values */
complex *freq; /* transformed integer as complex values */
complex *sq; /* squared input */
complex *sq; /* squared input */
fftw plan trans; /* FFT plan for forward transform */
fftw plan trans; /* FFT plan for forward transform */
fftw_plan invtrans; /* FFT plan for inverse transform */
fftw_plan invtrans; /* FFT plan for inverse transform */
int i;
int i;
/* allocate for fftw */
/* allocate for fftw */
in = (complex *) fftw_malloc(sizeof(fftw_complex) * N);
in = (complex *) fftw_malloc(sizeof(fftw_complex) * N);
freq = (complex *) fftw_malloc(sizeof(fftw_complex) * N);
freq = (complex *) fftw_malloc(sizeof(fftw_complex) * N);
sq = (complex *) fftw_malloc(sizeof(fftw_complex) * N);

```
sq = (complex *) fftw_malloc(sizeof(fftw_complex) * N);
```


FFT Square Example C Source.

```
/*
    * load long integers into FFT input array
    */
for (i=0; i < N; ++i) {
    in[i] = (complex)input[i]; /* long integer to complex conversion */
}
/* debugging */
printf("input: ");
for (i=N-1; i >= 0; --i) {
    printf(" %ld ", input[i]);
}
putchar('\n');
/*
    * forward transform
    */
trans = fftw_plan_dft_1d(N, (fftw_complex*)in, (fftw_complex*)freq,
                                    FFTW_FORWARD, FFTW_ESTIMATE);
fftw_execute(trans);
```


FFT Square Example C Source. 2

```
/*
    * square the elements
    */
for (i=0; i < N; ++i) {
    freq[i] = freq[i] * freq[i]; /* square the complex value */
}
/* debugging */
printf("freq: ");
for (i=N-1; i >= 0; --i) {
        printf("(%f,%fi) ", creal(freq[i])/N, cimag(freq[i])/N);
}
putchar('\n');
/*
    * inverse transform
    */
invtrans = fftw_plan_dft_1d(N, (fftw_complex*)freq, (fftw_complex*)sq,
                                    FFTW_BACKWARD, FFTW_ESTIMATE);
fftw_execute(invtrans);
/*
    * convert complex to rounded long integer
    */
for (i=0; i < N; ++i) {
    output[i] = (long)(creal(sq[i]) / (double)N); /* complex to scaled long integer */
}
```


FFT Square Example C Source.з

```
    /*
        * output the result
        */
    printf("fft output: ");
    for (i=N-1; i >= 0; --i) {
        printf("(%f,%fi) ", creal(sq[i]), cimag(sq[i]));
    }
    putchar('\n');
    /* NOTE: Carries are not propagated in this code */
    printf("scaled output: ");
    for (i=N-1; i >= 0; --i) {
        printf(" %ld ", output[i]);
    }
    putchar('\n');
    /*
    * cleanup
    */
    fftw_destroy_plan(trans);
    fftw destroy plan(invtrans);
    fftw free(in);
    fftw free(freq);
    fftw_free(sq);
    exit(0);
```

\}

FFT Square Example C Source - Just the Facts

```
/* load long integers into FFT input array */
for (i=0; i < N; ++i) {
    in[i] = (complex)input[i]; /* long integer to complex conversion */
}
/* forward transform */
trans = fftw_plan_dft_ld(N, in, freq, FFTW_FORWARD, FFTW_ESTIMATE);
fftw_execute(trans);
/* square the elements */
for (i=0; i < N; ++i) {
    freq[i] = freq[i] * freq[i]; /* square the complex value */
}
/* inverse transform */
invtrans = fftw_plan_dft_1d(N, freq, sq, FFTW_BACKWARD, FFTW_ESTIMATE);
fftw_execute(invtrans);
/* convert complex to rounded long integer */
for (i=O; i < N; ++i) {
        output[i] = (long)(creal(sq[i]) / (double)N) /* complex to scaled long integer */
}
/* NOTE: TODO: propagate carries */
```


The Details are in the Rounding!

- Just like in classical multiplication / squaring
- Using a larger base helps
- We do not need to put 1 digit per cell like in the previous "examples"
-What base can we use?
- Too small of a base: Slows down the test!
- Too large of a base: The final rounding rounds to the wrong value

Image credit:
Flickr user veruus Creative Commons License

- Expect to use a base of "about $1 / 4$ " of the CPU's numeric precision
- The Amdahl 1200 had a floating point 96 bit mantissa: 18900 point transform used a base of 2^{23}
- Analyze the digital rounding errors
- Estimate the maximum precision you can use
- Test your estimate
- Test worst case energy spike patterns
- Add check code to your multiply / square routine to catch any other mistakes
- Verify that $U x^{2} \bmod 2^{64}-3=\left(U x \bmod 2^{64}-3\right)^{2} \bmod 2^{64}-3$
- Verify that complex part of point output rounds to 0

Try non-Fourier Transforms

- Some of the integer transforms perform well on some CPUs
- Especially where integer CPU ops are fast vs. floating point
- PFA Fast Fourier Transform and on Winograd's radix FFTs
- Used by Amdahl 6 to find a largest known prime
- Dr. Crandall's transform
- See https://www.ams.org/journals/mcom/1994-62-205/S0025-5718-1994-1185244-1/ S0025-5718-1994-1185244-1.pdf
- GIMPS used Dr. Crandall's transform to find many largest known primes
- See also https://www.daemonology.net/papers/fft.pdf
- Schönhage-Strassen Transform
- Used by the GNU Multiple Precision Arithmetic Library
- Used by FLINT
- Roll your own efficient Transform
- Ask a friendly computational mathematician for advice

Even Better: Number Theoretic Transforms

- Avoids complex arithmetic
- Uses powers of integers modulo some prime instead of complex numbers
- Examples:
- Schönhage-Strassen algorithm
- https://tonjanee.home.xs4all.nl/SSAdescription.pdf
- GNU Multiple Precision Arithmetic Library, See: https://gmplib.org
- FLINT: Fast Library for Number Theory: http://www.flintlib.org
- Crandall's Transform
- https://www.ams.org/journals/mcom/1994-62-205/S0025-5718-1994-1185244-1/S0025-5718-1994-1185244-1.pdf
- https://www.daemonology.net/papers/fft.pdf
- Fürer's algorithm
- Anindya De, Chandan Saha, Piyush Kurur and Ramprasad Saptharishi gave a similar algorithm that relies on modular arithmetic
- Symposium on Theory of Computation (STOC) 2008, see https://arxiv.org/abs/0801.1416
- A good primer on Number Theoretic Transform Multiplication:
- https://tonjanee.home.xs4all.nl/SSAdescription.pdf

Number Theoretic Transform Multiply Example

- Number-theoretic transforms in the integers modulo 337 are used, selecting 85 as an 8th root of unity
- Base 10 is used in place of base 2^{w} for illustrative purposes

Mersenne Test Revisited

- Start with a table of $\mathrm{M}(\mathrm{p})$ candidates (where p is prime)
- Look for small factors, tossing out those with factors that are not prime
- Until the rate of tossing out candidates is slower than Lucas-Lehmer test rate
- For each $M(p)$ remaining, perform the Lucas-Lehmer test
- $\mathrm{U}_{2}=4$ and $\mathrm{U}_{\mathrm{i}+1} \equiv \mathrm{U}_{\mathrm{i}}{ }^{2}-2 \bmod \mathrm{M}(\mathrm{p})$ until U_{p} is computed
- Pad U_{x} with leading 0's (at least p bits, more if required by Transform size)
- Transform
- Square each point
- Inverse Transform
- Divide real parts of points by point count and round to integers
- Propagate carries
- Subtract 2
- Mod M(p) using "shift and add" method
- If $U_{p} \equiv 0$ then $M(p)$ is prime, otherwise it is not prime

EFF Cooperative Computing Awards

- \$50 000 - prime number with at least
- Awarded 2000 April 2
- \$100 000 - prime number with at least
- Awarded 2009 October 22
- \$150 000 - prime number with at least 100000000 decimal digits
- Unclaimed as of 2022 Apr 25
- \$250 000 - prime number with at least 1000000000 decimal digits
- Unclaimed as of 2022 Apr 25
- BTW: Landon is on the EFF Cooperative Computing Award Advisory Board
- And therefore Landon is NOT eligible for an award
- Because Landon is an advisor, he will NOT give private advice to individuals seeking large primes
- Landon does give public classes / lectures where the content + Q\&A are open to anyone attending

EFF Cooperative Computing Awards II

- Funds donated by an anonymous donor to EFF
- Official Rules:
- https://www.eff.org/awards/coop/rules
- See also: https://www.eff.org/awards/coop/faq
- Rules designed by Landon Curt Noll
- See https://www.eff.org/awards/coop/primeclaim-43112609 for a valid claim
- Rule 4F: You must publish your proof in a refereed academic journal!
- Your claim must include a citation and abstract of a published paper that announces the discovery and outlines the proof of primality. The cited paper must be published in a refereed academic journal with a peer review process that is approved by EFF.
- EFF Cooperative Computing Award Advisory Board
- Landon Curt Noll (Chair), Simon Cooper, Chris K. Caldwell
- Advisory Board members are not eligible to win an award

www.isthe.com/chongo/tech/math/prime/prime-tutorial.pdf Questions for Part 1
 1) Was M(4253) ever the largest known prime?
 - Hint: See slide 30
 - 2) How do we know that $2^{1000000000}-1$ is not prime?

- Hint: See slide 29
- 3) Should one try to factor $M(p)$ before running the Lucas-Lehmer test?
- Hint: think about when p is a large prime AND see slide 41
- 4) If a Lucas-Lehmer test of $M(p)$ using Classical Squaring takes 1 hour, how long would it take to test $M(x)$ where x is about $100^{*} \mathrm{p}$?
- Hint: See slides 40 \& 41
- 5) If it took GIMPS 12 days to prove M(82589933) is prime, how long should it take them to test a Mersenne prime just large enough to claim the $\$ 150000$ award?
- Hint: M(332192831) has 100000007 digits
- Hint: See slides 49, 65, 66 [[NOTE: M(332192831) is likely not prime]] [[NOTE: They used Transforms to Square]]
-6) Prove that $M(7)=2^{7}-1=127$ is prime using the Lucas-Lehmer test
- Hint: See slides 18, 19, 27, 28

Part 2 - Large Riesel Primes Faster

- 231-1: Riesel Test: Searching sideways
- 261-1: Pre-screening Riesel test candidates
- 289-1: Multiply+Add in Linear Time
- 2127-1: Final Words and Some Encouragement
- 2521-1: Resources

Image Credit: Flickr user NguyenDai Creative Commons License

231-1: Riesel Test: Searching sideways

- While the Lucas-Lehmer test is the most efficient proof of primality known ...
- ... It is not the most efficient method to find a new largest known prime!
- Why? Well ...
- Mersenne Primes are rare
- Only 47 out of 43112609 Mersenne Numbers are prime
- And even these odds are skewed (too good to be true), because of the pile of small Mersenne Primes
- Only 7 of the 29260728 Mersenne numbers that are between 1 million to 10 million decimal digits in size, are prime
- As p grows, Mersenne Prime $M(p)$ get even more rare
- As p gets larger, the Lucas-Lehmer test with the best multiply worse than:
- $\mathrm{O}\left(\mathrm{p}^{2} \ln \mathrm{p}\right)$
- Worse still, numbers may grow large with respect to memory cache
- Busting the cache slows down the code
- The length of time to test will likely exceed the MTBF and MTBE
- Mean Time Before Failure and Mean Time Before Error
- You must verify (recheck your test) and have someone else independently verify (3rd test)
- So plan on the time to test the number at least 3 times!
- The GIMPS test for the 2018 largest known prime took 12 days

Advantages of Searching for $\mathrm{h}^{* 2}$ n-1 Primes

- Riesel test for $\mathrm{h}^{*} 2^{\mathrm{n}}-1$ is almost as efficient as Lucas-Lehmer test for $2^{\mathrm{P}}-1$
- Riesel test is about 10\% slower than Lucas-Lehmer
- When h is small enough ... but not too small
- Test is very similar to Lucas-Lehmer so many of the performance tricks apply
- Testing $\mathrm{h}^{*} 2^{\mathrm{n}}-1$ grows as n grows - Avoid the exponential wall (go sideways)
- Solution: pick a fixed value n and change only the value of h
- Use odd values of $h<2^{n}$ (if h in even, divide by 2 and increase n until h is odd)
- A practical bound for h is: $2^{*} n<h<16^{*} n$
- Better still keep $2^{*} n<h<$ single precision unsigned integer (on a 64-bit machine, this might be 2^{32} or 2^{64})
- N may be selected to optimize the algorithm used to square large integers
- Pre-screening can eliminate $\mathbf{> 9 8 . 5 \%}$ of candidates
- When $2^{*} \mathrm{n}<\mathrm{h}<2^{\mathrm{n}}$ primes of the form $\mathrm{h}^{*} 2^{\mathrm{n}}-1$ are not rare like Mersenne Primes
- They tend appear about as often as your average prime that is about the same size
- Odds that $h^{*} 2^{n}-1$ is prime when $2^{*} n<h<2^{n}$ is about 1 in $2^{*} \ln \left(h^{*} 2^{n}-1\right)$
- You can "guesstimate" the amount of time it will take to find a large prime

Mersenne Primes Dethroned

- 1989: 391581 * $2^{216193}-165087$ digits Amdahl 6 using the Amdahl 1200
- Only 37 digits larger than $\mathrm{M}(216091)$ that was found in 1985
- "Just a fart larger" - Dr. Shanks
- BTW: The number we tested was really 783162 * $2^{216192}-1$
- Amdahl 6 team:
- Landon Curt Noll, Gene Smith, Sergio Zarantonello, John Brown, Bodo Parady, Joel Smith
- Did not use the Lucas-Lehmer Test
- Squared numbers using Transforms
- First use for testing non-Mersenne primes
- First efficient use for small 1000 digit tests

Riesel Test for h*2n-1 is Lucas-Lehmer like

- $h^{*} 2^{n}-1$ is prime if and only if odd $h<2^{n}$,
$h^{*} 2^{n}-1$ not divisible by 3 , and
$U_{n} \equiv 0 \bmod h^{*} 2^{n}-1$
- If h in even, divide by 2 and increase n until h is odd
$-\mathrm{U}_{2}=\mathrm{V}(\mathrm{h})$
- We will talk about how to calculate $\mathrm{V}(\mathrm{h})$ in the slides that follow
- $\mathrm{U}_{\mathrm{x}+1} \equiv \mathrm{Ux}^{2}-2 \bmod \mathrm{~h}^{*} 2^{\mathrm{n}}-1$
- Differences from the Lucas-Lehmer test
- Need to verify $h^{*} 2^{n}-1$ is not a multiple of 3
- The power of 2 does not have to be prime
- We calculate $\bmod h^{*} 2^{n}-1$ not $\bmod 2^{n}-1$
- U_{2} depends on $\mathrm{V}(\mathrm{h})$ and is not always 4

$7=1 \times 7$

$7=2 \times 3+1$
$7=3 \times 2+1$
$7=4 \times 1+3$
$7=5 \times 1+2$
$7=6 \times 1+1$
$7=7 \times 1$

Example code for Riesel Test

- Example code for Riesel Test:

- http://www.isthe.com/chongo/src/calc/lucas-calc
- Source code contains lots and lots of comments with lots of references to papers - worth reading!
- NOTE: Only use this code as a guide, calc by itself is not intended to find a new largest known prime
- Written in Calc - A C-like multi-precision calculator: http://www.isthe.com/chongo/tech/comp/calc/
- https://github.com/arcetri/gmprime
- Written in C
- Implements the algorithm of http://www.isthe.com/chongo/src/calc/lucas-calc
- A potential code base from which to start optimization
- Uses GMU MP
- Extensive test code
- Had debugging options
- https://github.com/arcetri/goprime
- A potential code base from which to start optimization
- Once version written in go benchmarks several square methods
- One version written in C that uses flint: http://www.flintlib.org
- http://jpenne.free.fr/index2.html

Prior to finding $U(2)$ - Riesel test setup

- Pretest: Verify $h^{*} 2^{n}-1$ is not a multiple of 3
- Do not test if ($\mathrm{h} \equiv 1 \bmod 3$ AND n is even) NOR if $(\mathrm{h} \equiv 2 \bmod 3$ AND n is odd)
- This pretest is mandatory when h is not a multiple of 3
- No need to test $\mathrm{h}^{*} 2^{\mathrm{n}}-1$ because in this case 3 is a factor!
- Test only odd h
- Only test odd h, ignore even h
- One can always divide h by 2 and add one to 1 until h becomes odd
- Riesel test requires $\mathrm{h}<2^{\mathrm{n}}$
- We recommend using odd h in this range: $2^{*} \mathrm{n}<\mathrm{h}<16^{*} \mathrm{n}$

Calculating $\mathrm{U}(2)$ when h is not a multiple of 3

- Pretest: Verify that $\mathrm{h}^{*} 2^{\mathrm{n}}-1$ is not a multiple of 3
- Do not test if ($\mathrm{h} \equiv 1 \bmod 3$ AND n is even) NOR
if ($\mathrm{h} \equiv 2 \bmod 3$ AND n is odd)
- Note that we are considering only the case when h is odd
- For even h, divide h by 2 and add one to 1 until h becomes odd
- Start with:
- $\mathrm{V}(0)=2$
- $\mathrm{V}(1)=4 \quad$ (NOTE: $\mathrm{V}(1)=4$ always works when h is not multiple of 3)
- Compute $\mathrm{V}(\mathrm{h})$ using these recursion formulas:
$-\mathrm{V}(\mathrm{i}+1)=\left[\mathrm{V}(1)^{*} \mathrm{~V}(\mathrm{i})-\mathrm{V}(\mathrm{i}-1)\right] \bmod \mathrm{h}^{*} 2^{\mathrm{n}}-1$
$-\mathrm{V}\left(2^{*} \mathrm{i}\right)=\left[\mathrm{V}(\mathrm{i})^{2}-2\right] \bmod \mathrm{h}^{*} 2^{\mathrm{n}}-1$
$-\mathrm{V}\left(2^{*} \mathrm{i}+1\right)=\left[\mathrm{V}(\mathrm{i})^{*} \mathrm{~V}(\mathrm{i}+1)-\mathrm{V}(1)\right] \bmod \mathrm{h}^{*} 2^{\mathrm{n}}-1$
- $\mathrm{U}(2)=\mathrm{V}(\mathrm{h})$

Calculating $U(2)$ when h is a multiple of 3

- Pretest: Verify that $h^{*} 2^{n}-1$ is not a multiple of 3
- Do not test if $(\mathrm{h} \equiv 1 \bmod 3$ AND n is even) NOR if $(\mathrm{h} \equiv 2 \bmod 3$ AND n is odd)
- Note that we are considering only the case when h is odd
- For even h, divide h by 2 and add one to 1 until h becomes odd
- Start with:
- $\mathrm{V}(0)=2$
- $\mathrm{V}(1)=\mathrm{X}>2$ where Jacobi $\left(\mathrm{X}-2, \mathrm{~h}^{*} 2^{\mathrm{n}}-1\right)=1$ and where $\operatorname{Jacobi}\left(\mathrm{X}+2, \mathrm{~h}^{*} 2^{\mathrm{n}}-1\right)=-1$
- Jacobi(a,b) is the Jacobi Symbol
- See "A note on primality tests for $\mathrm{N}=\mathrm{h}^{*} 2^{\mathrm{n}}-1$ "

An excellent 5 page paper by Öystein J. Rödseth,
Department of Mathematics, University of Bergen,
BIT Numerical Mathematics. 34 (3): 451-454.

"I think you should be more explicit here in step two."

- Compute $\mathrm{V}(\mathrm{h})$ using these recursion formulas:
$-\mathrm{V}(\mathrm{i}+1)=\left[\mathrm{V}(1)^{*} \mathrm{~V}(\mathrm{i})-\mathrm{V}(\mathrm{i}-1)\right] \bmod \mathrm{h}^{*} 2^{\mathrm{n}}-1$
$-\mathrm{V}\left(2^{*} \mathrm{i}\right)=\left[\mathrm{V}(\mathrm{i})^{2}-2\right] \bmod \mathrm{h}^{*} 2^{\mathrm{n}}-1$
$-\mathrm{V}\left(2^{*}+1\right)=\left[\mathrm{V}(\mathrm{i})^{*} \mathrm{~V}(\mathrm{i}+1)-\mathrm{V}(1)\right] \bmod \mathrm{h}^{*} 2^{\mathrm{n}}-1$
- $\mathrm{U}(2)=\mathrm{V}(\mathrm{h})$

Calculating the Jacobi symbol is easy

- Pre-condition: b must be an odd (i.e., b $\equiv 1 \mathrm{mod} 2$) and $0<\mathrm{a}<\mathrm{b}$

```
- Jacobi (a,b) {
    j := 1
    while (a is not 0) {
        while (a is even) {
        a := a / 2
    }
        j := - j
    a := a mod b
    }
    if (b is 1)
    return j
    else
    return 0
}
```

 if \(((b \equiv 3 \bmod 8)\) or \((b \equiv 5 \bmod 8))\)
 j := - j
 temp := a; a := b; b := temp // exchange a and b
 if \(((a \equiv 3 \bmod 4)\) and \((b \equiv 3 \bmod 4))\)

How to find $V(1)$ when h is a multiple of 3

- Try these values of X in the following order:
$-3,5,9,11,15,17,21,27,29,35,39,41,45,51,57,59,65,69,81$
- Search the list for X where $\operatorname{Jacobi}\left(X-2, h^{*} 2^{n}-1\right)=1$ and $\operatorname{Jacobi}\left(X+2, h^{*} 2^{n}-1\right)=-1$

Set $V(1)$ to the first value of X that satisfies those 2 Jacobi equations

- Fewer than 1 out of 1000000 cases, when h is an odd multiple of 3 , are not satisfied by the above list
- If none of those values work for $V(1)$, test odd values of X starting at 83
- Find first odd $\mathrm{X} \geq 83$ where Jacobi $\left(X-2, h^{*} 2^{\mathrm{n}}-1\right)=1$ and Jacobi $\left(X+2, h^{*} 2^{n}-1\right)=-1$
- An implementation of this method using C \& GNU MP:
- https://github.com/arcetri/gmprime

How to find $\mathrm{V}(1)$ when h is NOT a multiple of 3

- To speed up generating $\mathrm{U}(2)=\mathrm{V}(\mathrm{h})$, we need to find a small $\mathrm{V}(1)$
- If h is odd and not a multiple of 3 , and
if $\operatorname{Jacobi}\left(1, h^{*} 2^{n}-1\right)=1$ and $\operatorname{Jacobi}\left(5, h^{*} 2^{n}-1\right)=-1$ then

$$
-V(1)=3
$$

- else
$-\mathrm{V}(1)=4$

- 40% of $h^{*} 2^{n}-1$ values can use a $V(1)$ value of 3
- 4 always works for $\mathrm{h}^{*} 2^{\mathrm{n}}-1$ when h is not a multiple of 3
- An implementation of this method using C \& GNU MP:

Riesel Test example: 7*25-1 $=223$

- $7^{*} 2^{5}-1$ is prime if and only if $7<2^{5}$ and $\mathrm{U}_{5} \equiv 0 \bmod 7^{*} 2^{5}-1$
- $\mathrm{V}(0)=2$
$=\mathrm{V}(1)=3$ (because $\operatorname{Jacobi}(1,223)==1$ and $\operatorname{Jacobi}(5,223)==-1$, we could also use 4 because $\mathrm{h}==7$ is not a multiple of 3)
$-\mathrm{V}(\mathrm{i}+1)=\left[\mathrm{V}(1)^{*} \mathrm{~V}(\mathrm{i})-\mathrm{V}(\mathrm{i}-1)\right] \bmod \mathrm{h}^{*} 2^{\mathrm{n}}-1$
$-\mathrm{V}\left(2^{*} \mathrm{i}\right)=\left[\mathrm{V}(\mathrm{i})^{2}-2\right] \bmod \mathrm{h}^{*} 2^{\mathrm{n}}-1$
$-\mathrm{V}\left(2^{*} \mathrm{i}+1\right)=\left[\mathrm{V}(\mathrm{i})^{*} \mathrm{~V}(\mathrm{i}+1)-\mathrm{V}(1)\right] \bmod \mathrm{h}^{*} 2^{\mathrm{n}}-1$
- Calculating $\mathrm{V}(7)$ from $\mathrm{V}(0)$ and $\mathrm{V}(1)$
- $V(0)=2$
- $\mathrm{V}(1)=3$ (because Jacobi(1,223) $==1$ and Jacobi(5,223) $==-1$, see the previous slide)
$-\mathrm{V}(2)=\left[\mathrm{V}[1]^{2}-2\right] \bmod 223=7$
$-\mathrm{V}(3)=\left[\mathrm{V}[1]^{*} \mathrm{~V}[2]-\mathrm{V}[1]\right] \bmod 223=18$
$-\mathrm{V}(4)=\left[\mathrm{V}[2]^{2}-2\right] \bmod 223=47$
$-V(5)=\left[V(1)^{*} V(4)-V(3)\right] \bmod 223=123$
$-\mathrm{V}(6)=\left[\mathrm{V}(1)^{*} \mathrm{~V}(5)-\mathrm{V}(4)\right] \bmod 223=99$
$-\mathrm{V}(7)=\left[\mathrm{V}(1)^{*} \mathrm{~V}(6)-\mathrm{V}(5)\right] \bmod 223=174$

Riesel Test example: $7^{*} 2^{5}-1=223$

- $7^{*} 2^{5}-1$ is prime if and only if $7<2^{5}$ and $U_{5} \equiv 0 \bmod 7^{*} 2^{5}-1$
$-\mathrm{U}_{2}=\mathrm{V}(\mathrm{h})$
- $U_{x+1} \equiv U_{x}{ }^{2}-2 \bmod h^{*} 2^{n}-1$
- Riesel test: $7^{*} 2^{5}-1=223$
- $\mathrm{U}_{2}=\mathrm{V}(7)=174$
- $\mathrm{U}_{3}=174^{2}-2=30274 \bmod 223 \equiv 169$
- $\mathrm{U}_{4}=169^{2}-2=28559 \bmod 223 \equiv 15$
- $\mathrm{U}_{5}=15^{2}-2=223 \bmod 223 \equiv 0$
- Because $U_{5} \equiv 0 \bmod 223$ we know that $7^{*} 2^{5}-1=223$ is prime

Calculating mod $\mathrm{h}^{*} \mathrm{2}^{\mathrm{n}}-1$

- Very similar to the "shift and add" method for mod $2^{n}-1$
- Split the value into two chunks:

$$
\mathrm{U}_{\mathrm{x}}{ }^{2}-2=\quad \begin{array}{|c|c|}
\hline \mathrm{J} & \mathrm{~K} \\
\hline
\end{array}
$$

Then $U_{x}{ }^{2}-2 \bmod h^{*} 2^{n}-1 \equiv \operatorname{int}(J / h)+(J \bmod h)^{*} 2^{n}+K$

- If $\operatorname{int}(J / h)+(J \bmod h)^{*} 2^{n}+K>h^{*} 2^{n}-1$ then repeat the above

Mod $\mathrm{h}^{*} 2^{\mathrm{n}}-1$ can be done in $\mathrm{O}(\mathrm{d})$ steps

Keep h single precision, but not too single!

- Calculating mod $h^{*} 2^{n}-1$ requires computing: $\operatorname{int}(J / h)+(J \bmod h)^{*} 2^{n}+K$
- K is the first n bits, J is everything beyond the first n bits:

$$
\mathrm{U}_{\mathrm{x}}{ }^{2}-2=\quad \begin{array}{|c|c|}
\hline \mathrm{J} & \mathrm{~K} \\
\hline
\end{array}
$$

- Calculating $\operatorname{int}(\mathrm{J} / \mathrm{h})$ and (J mod h) takes more time for double precision h
- keep $\mathrm{h}<2^{63}$ (when testing on a 64-bit machine)
- Do NOT make h too small!
- primes of the form $h^{*} 2^{n}-1$ tend to be rare when h is tiny
- Keep 2*n < h
- But not too much greater than 2*n to avoid double precision mod speed issues
- For example, keep: $2^{*} \mathrm{n}<\mathrm{h}<16^{*} \mathrm{n}$

261-1: Pre-screening Riesel Test Candidates

- Eliminate $h^{*} 2^{n}-1$ values that are a multiple of small primes
- Avoid testing large values are "obviously" not prime
- We will use sieving techniques to quickly find multiples of small primes
- In order to understand these sieving techniques ...
- Let first look in detail, of how to use the "Sieve of Eratosthenes" to find tiny primes
- Then we will apply these ideas to quickly eliminate Riesel candidates that are multiple or small primes

The Sieve of Eratosthenes

- Sieve the integers
- Given the integers:
- 1234567891011121314151617181920212223242526272829303132 ...
- Ignore 1 (we define it as not prime)
- 1234567891011121314151617181920212223242526272829303132 ...
- The next unmarked number is prime .. 2
- 1234567891011121314151617181920212223242526272829303132 ...
- .. cancel every 2 nd value after that

- The next value remaining, 3 , is prime so mark it and cancel every 3rd value after that

- And the same for 5

- And 7 NOTE: Our list ends before $7^{2}=49$, so the mark remaining values as prime
- $1234567891011121314151617181920212223242526272829303132 \ldots$

When the List does NOT Start with 1

We can sieve over a segment of that integers that does not start with 1
－Consider this list：
－ 100101102103104105106107108109110111112113114115116117118119120121 ．．．
－Start with 1st prime：2，find the first multiple of 2，cancel it \＆every 2nd value

－2nd prime： 3 ，find the first multiple of 3 ，cancel it \＆every 3rd value

－3rd prime： 5 ，find the first multiple of 5，cancel it \＆every 5th value

－4th prime： 7 ，find the first multiple of 7 ，cancel it \＆every 7 th value
－ 1001011021031041 奴 5106107108109110111 1X2 113114115116117118 1X9 120121 ．．．
－5th prime 11，find the first multiple of 11，cancel it \＆every 11th value
－ 100101102103104105106107108109 保 111112113114115116117118119120 仪 1 ．．．
－Because our list ends before $13^{2}=169$ ，the rest are prime
－ 100101102103104105106107108109110111112113114115116117118119120121 ．．．

Skipping the Even Numbers While Sieving

When not starting at 1，we can ignore the even numbers and it still works
－Consider this list：
－ 101103105107109111113115117119121123125127129131133135137139141 ．．．
－No need to eliminate 2＇s since the values are all odd
－Start with 3，find the first multiple of 3，cancel it \＆every 3rd

－5：find the first multiple of 5，cancel it \＆every 5th value

－7：find the first multiple of 7 ，cancel it \＆every 7 th value
－ 101103 仪 507109111113115117 俰9 121123125127129131 1X3 135137139141 ．．．
－11：find the first multiple of 11，cancel it \＆every 11th value
－ 101103105107109111113115117119 仅 1123125127129131133135137139141 ．．．
－Because our list ends before $13^{2}=169$ ，the rest are prime
－ 101103105107109111113115117119121123125127129131133135137139141 ．．．

Sieving Over an Arithmetic Sequence

- Consider the following arithmetic sequence
- We will use the sequence $10 * x+1$
- 101111121131141151161171181191201211221231241251261271281291301 ...
- None of the values are multiples of 2, so 3: find the first multiple of 3, cancel every 3rd

- None of the values are multiples of 5, so 7: find the first multiple of 7, cancel every 7th
- 101111121131141151 仅 11711811912012112212 2X1 241251261271281291 3 121 ...
- 11: find the first multiple of 11, cancel it \& every 11th value
- 101111 化 1311411511611711811912012112212 2X1 241251261271281291301 ...
- 13: find the first multiple of 13 , cancel it \& every 13 th value
- 1011111211311411511611711811912012112 2X1 231241251261271281291301 ...
- 17: find the first multiple of 17 , cancel it \& every 17 th value
- $1011111211311411511611711811912012112 \times 1231241251261271281291301$...
- Because our list ends before $19^{2}=361$, the rest are prime
- 101111121131141151161171181191201211221231241251261271281291301 ...

Sieving Over a Sequence of Riesel Sequence

- For a given n, as h increases, $h^{*} 2^{n}-1$ is an arithmetic sequence
- Consider h* $2^{5}-1$ for increasing h, all of which are odd so we need not sieve for 2
$\cdot{ }_{1}{ }^{*} 5^{5}-1=31 \quad 2^{*} 2^{5}-1=63 \quad 3^{*} 2^{5}-1=95 \quad 4^{*} 2^{5}-1=127 \quad 5^{*} 2^{5}-1=159 \quad 6^{*} 2^{5}-1=191 \quad 7^{*} 2^{5}-1=223 \quad 8^{*} 2^{5}-1=255 \quad 9^{*} 2^{5}-1=287$
- 3: find the first multiple of 3, and then cancel every 3rd
$\cdot 1^{*} 2^{5}-1=31 \quad 2^{*} 2^{5}-1=\chi \quad 3^{*} 2^{5}-1=95 \quad 4^{*} 2^{5}-1=127 \quad 5^{*} 5^{5}-1=1 \times \quad 6^{*} 2^{5}-1=191 \quad 7^{*} 2^{5}-1=223 \quad 8^{*} 2^{5}-1=2 \times 29^{*} 5^{5}-1=287$
- 5: find the first multiple of 5 , cancel it, and then cancel every 5th value

$$
\cdot \quad{ }_{1 * 2} 5^{5}-1=31 \quad 22^{*} 2^{5}-1=63 \quad 3^{*} 2^{5}-1=\chi \quad 4^{*} 2^{5}-1=127 \quad 5^{*} 5^{5}-1=159 \quad 6^{*} 2^{5}-1=191 \quad 7^{*} 5^{5}-1=223 \quad 8^{*} 2^{5}-1=2 X \quad 9^{*} 5^{5}-1=287
$$

- 7: find the first multiple of 7 , cancel it, and then cancel every 7th value

$$
\text { - } \begin{array}{rllllll}
* & 5 & -1=31 & 2^{*} 2^{5}-1=\chi & 3^{*} 2^{5}-1=95 & 4^{*} 2^{5}-1=127 & 5^{*} 2^{5}-1=159
\end{array} 6^{*} 2^{5}-1=191 \quad 7^{*} 2^{5}-1=223 \quad 8^{*} 2^{5}-1=255 \quad 9^{*} 5^{5}-1=2 \chi
$$

- 11: find the first multiple of 11 .. there is none in this list, so skip it
- 13: find the first multiple of 13 .. there is none in this list, so skip it
- Because our list ends before $17^{2}=289$, the rest are prime

Sieving a Riesel Sequence is not useful for finding a large prime

- It helps quickly identify Riesel numbers that are NOT prime so we won't waste time on them Now let return to the quickly eliminating multiples of small primes ...

Pre-screening Riesel Candidates by Sieving

- Given an arithmetic sequence of Riesel numbers: $\mathrm{h}^{*} 2^{\mathrm{n}}-1$
- for $2^{*} n<h<16 * n$
- Our list (an arithmetic sequence) to candidates becomes:

$$
-(2 n+1)^{*} 2^{n}-1 \quad(2 n+2)^{*} 2^{n}-1 \quad(2 n+3)^{*} 2^{n}-1 \quad(2 n+4)^{*} 2^{n}-1 \quad \ldots \quad(16 n-1)^{*} 2^{n}-1
$$

- Build an array of bytes: $\mathrm{c}[0] \mathrm{c}[1]$.. $\mathrm{c}\left[2^{*} \mathrm{n}\right] \mathrm{c}\left[2^{*} \mathrm{n}+1\right]$.. $\mathrm{c}\left[16^{*} n-1\right]$
- Where c[h] represents the candidate: $h^{*} 2^{n}-1$
- Initially set c[0] .. c[2*n] = 0 as these values have too small of an h to be useful
- $c[0]==0 * 2^{n}-1==0$ does not need to be primality tested
- $c[1]==1 * 2^{n}-1==$ a mersenne number, might need to be primality tested, but is unlikely to be prime and isn't when n is not prime
- Set c[2*n+1] .. c[16*n-1] = 1
- These Riesel candidates have a 2* $\mathrm{C}<\mathrm{h}<16^{*} \mathrm{n}$
- For each test factor Q, find the first element, $c[X]$, that is a multiple of Q
- See the next slide for how we find the first element, $X^{*} 2^{n}-1$, that is a multiple of Q
- Clear $\mathrm{c}[\mathrm{X}]$ and clear every Q-th element just like we did those sieve examples
- for $(y=X ; y<16 * n ; y+=Q)\{c[y]=0 ;\}$ /* these values are multiples of Q and therefore not prime */

How to Find the First Element that is Multiple of Q

- How to find the first X where $X^{*} 2^{n}-1$ is a multiple Q
- We assume that Q is odd
- Since $X^{*} 2^{n}-1$ is never even, one never needs to consider even values of Q
- Let $\mathrm{R}=2^{\mathrm{n}} \bmod \mathrm{Q}$
- See the next 3 slides for how to compute R
- Let S = Modular multiplicative inverse of $\mathrm{R} \bmod \mathrm{Q}$
- https://en.wikipedia.org/wiki/Modular_multiplicative_inverse
- https://rosettacode.org/wiki/Modular_inverse\#C
- See 4 slides down for how we compute the modular multiplicative inverse
- Then the first h where $h^{*} 2^{n}-1$ is a multiple Q is: $S^{*} 2^{n}-1$
- Sieve out c[S], c[S+Q], c[S+(2*Q)], c[S+(3*Q)], c[S+(4*Q)], c[S+(5*Q)], ...
- These are all multiples of Q and therefore cannot be prime

How to Quickly Compute $\mathrm{R}=2^{\mathrm{n}}$ mod Q

- One can quickly compute $R=2^{n} \bmod Q$ by modular exponentiation
- Observe that:
- If $y=2^{x} \bmod Q$
- then $2^{(2 x)} \bmod Q=y^{2} \bmod Q \quad$ (the 0 -bit case)
- and $2(2 x+1) \bmod Q=2^{*} y^{2} \bmod Q$ (the 1 -bit case)

Minimize the 1-bits in n for Speed's Sake!

- Note that computing $R=2^{n}$ mod Q is faster when n , in binary, has fewer 1 bits
- For each 0-bit in n :
- square and mod
- For each 1-bit in n :

Image Credit:
Flickr user AceFrenzy
Creative Commons License

- square, multiply by 2 , then mod
- It is best to minimize the number of 1 -bits in n
- Choose an n that is a small multiple of a power of 2
- Such values of n have lots of 0-bits at the bottom

The Modular Exponent Trick - Small Example

- Compute R = $2^{117} \bmod 3391$
- In the example, we are pre-screening candidates of the form $\mathrm{h}^{*} 2^{\mathrm{n}}-1$, where $\mathrm{n}=117$
- We show how to compute $R=2^{117} \bmod Q$, where $Q=3391$ is an example test factor
- The exponent of 2 , in binary, is 117: 1110101, we start with some leading bits
- We start with on the leading 3 bits just for purposes of illustration
- On CPUs with w-bit words, you should start with the w leading bits
- 2^{7} : Start with the leading bits where we can raise 2 to that power
- Raise 2 to the leading 3 bits and mod: $\quad 2^{7} \bmod 3391 \equiv \mathbf{1 2 8}$
- $2{ }^{14}$: Next bit in the exponent, 1110101 is 0 :
- 0-bit: square and mod:
- $2{ }^{29}$: Next bit in the exponent, 1110101 is 1 :
- 1 -bit: square, multiply by 2 , then mod:
- 2^{58} : Next bit in the exponent, 1110101 is 0 :
- 0-bit: square and mod:
- 2^{117} : Next bit in the exponent, 1110101 is 1 :
- 1-bit: square, multiply by 2 , then mod:
$2 * 2800^{2} \bmod 3391 \equiv \mathbf{1 6}$
- Thus R = $2^{117} \bmod 3391 \equiv 16$

Image Credit:
Flickr user anton.kovalyov
Creative Commons License

- While computing $R=2^{n} \bmod Q$, the largest value encountered is $<2^{*} Q^{2}$

How to find the Modular Multiplicative Inverse of $R \bmod Q$

```
- /*
    * mul_inv - Modular Multiplicative Inverse
    * given:
        R an integer
        Q an integer > 0 and where gcd (R,Q) = 1
                            (i.e., R and Q have no common prime factors)
    returns:
    S = Modular Multiplicative Inverse of R mod Q
    */
int
mul_inv(int R, int Q)
{
    int QO = Q, t, q;
    int x0 = 0, S = 1;
    if (Q == 1) return 1;
    while (R > 1) {
        q = R / Q;
            t = Q; Q = R % Q; R = t;
            t = x0; x0 = S - q * x0; S = t;
    }
    if (S < O) S += Q0;
    return S;
}
```


How Deep Should we Sieve? A Practical Answer

- Sieve Riesel candidates until the time between sieve eliminations becomes longer than the time it takes to run a Riesel Test
- When it takes longer for the sieve to turn a c[y] from 1 to 0 , just do Riesel tests
- From experience: Sieve screening can eliminate $>98.5 \%$ of candidates
- NOTE: If you happen to sieve for a small non-prime, you just waste time
- You simply just won't eliminate c[y] values that haven't already been eliminated
- However the work to determine of Q is prime may waste too much time! So how much work is OK?
- Start sieving array of odd Q values while simultaneously sieving Riesel candidates with Q's that remain standing
- When the time it takes to eliminate an odd Q is longer than the time to do a single sieve of Riesel candidates, stop sieving Q values and just Sieve Riesel candidates

Riesel Test Revisited

- Pick large n and start with a table of $\mathrm{h}^{*} 2^{\mathrm{n}}-1$ where $2^{*} \mathrm{n}<\mathrm{h}<$ limit
- Where limit is less than the word size (say $h<2^{32}$ or $h<2^{64}$)
- Start with some practical range for h, say: $2^{*} n<h<16^{*} n$
- Look for small factors by sieving, tossing out those with factors of small primes
- For each $\mathrm{h}^{*} 2^{\mathrm{n}}-1$ remaining, perform the Riesel test (almost as fast as the Lucas-Lehmer)
$-\mathrm{U}_{2}=\mathrm{V}(\mathrm{h})$ and $\mathrm{U}_{\mathrm{x}+1} \equiv \mathrm{U}_{\mathrm{x}}{ }^{2}-2 \bmod \mathrm{~h}^{*} 2^{\mathrm{n}}-1$ until U_{n} is computed
- Pad U_{x} with leading 0 's (at least p bits, more if required by Transform size)
- Transform
- Square each point
- Inverse Transform
- Round to integers and/or normalize as needed
- Propagate carries
- Subtract 2
- Mod $\mathrm{h}^{*} 2^{\mathrm{n}}-1$ using a slightly more involved "shift and add" method
- If $U_{p} \equiv 0$ then $h^{*} 2^{n}-1$ is prime, otherwise it is not prime

Cray Records Return - Amdahl 6 lesson ignored

- 1992: M(756839) 227832 digits Slowinski \& Gage using the Cray 2
- 1994: M(859433) 258716 digits Slowinski \& Gage using the Cray C90
- 1995: M(1257787) 378632 digits Slowinski \& Gage using the Cray T94

Slowinski, Cray T94, Gage

Image Credit: Chris Caldwell

GIMPS Record Era - Just testing 2n-1

```
- Great Internet Mersenne Prime Search - Testing only Mersenne numbers (test 2n -1 only, not h*2n -1)
- https://www.mersenne.org
- Woltman, Kurowski, et al. using Crandall's Transform Square Algorithm
```

```
- 1996: M(1398269) 420 921 digits GIMPS + Armengaud
```

- 1996: M(1398269) 420 921 digits GIMPS + Armengaud
- 1997: M(2976221) }895932\mathrm{ digits GIMPS + Spence
- 1997: M(2976221) }895932\mathrm{ digits GIMPS + Spence
- 1998: M(3021377) 909 526 digits GIMPS + Clarkson
- 1998: M(3021377) 909 526 digits GIMPS + Clarkson
- 1999: M(6972593) 2098960 digits GIMPS + Hajratwala
- 1999: M(6972593) 2098960 digits GIMPS + Hajratwala
 - \$50000 Cooperative Computing Award winner - 1st known million digit prime
 - \$50000 Cooperative Computing Award winner - 1st known million digit prime
- 2001: M(13466917) 4053946 digits GIMPS + Cameron
- 2003: M(20996011) 6 320 430 digits GIMPS + Shafer
- 2004: M(24036583) }7235733\mathrm{ digits GIMPS + Findley
- 2005: M(25964951) 7816 230 digits GIMPS + Nowak
- 2005: M(30402457) 9 152052 digits GIMPS + Cooper *
- 2006: M(32582657) 9 808 358 digits GIMPS + Cooper *
chax chax *string);
const chax

```
```

chax *to, const chax

```
```

chax *to, const chax

```
- 2008: M(43112609) 12978189 digits GIMPS + Smith
- \$100 000 Cooperative Computing Award winner - 1st known 10 million digit prime
- 2013: M(57885161) 17425170 digits GIMPS + Cooper *
- 2016: M(74207281) 22338618 digits GIMPS + Cooper *
- 2017: M(77232917) 23249425 digits GIMPS + Pace
- 2018: M(82589933) 24862048 digits GIMPS + Laroche
\begin{tabular}{lll} 
- 2013: M(57885161) & 17425170 digits & GIMPS + Cooper * \\
- 2016: \(M(74207281)\) & 22338618 digits & GIMPS + Cooper * \\
- 2017: M(77232917) & 23249425 digits & GIMPS + Pace \\
- 2018: M(82589933) & 24862048 digits & GIMPS + Laroche
\end{tabular}

\section*{To be Fair to GIMPS}
- GIMPS stands for Great Internet Mersenne Prime Search
- GIMPS is about searching for Mersenne Primes Only
- While testing Riesel numbers \(\mathrm{h}^{*} 2^{\mathrm{n}}-1\) may be faster ...
- Riesel testing is outside of their "charter" / purpose

\section*{289-1: Multiply+Add in Linear Time}
- You can perform a n-bit multiply AND an n-bit add in 2*n clock cycles
- If you have \(\lceil\mathrm{n} / 37\) simple 11-bit state machines
- \(\lceil n / 3\rceil\) mean \(n / 3\) rounded up to the next integer
- See Knuth: Art of Computer Programming, Vol. 2, Section 4.3.3 E
- Calculates \(u^{*} v+q=a\)
- The machine does a multiply and an add at the same time
- Can calculate \(\mathrm{Un}^{2}-2\) in \(2^{*} \mathrm{n}\) clock cycles
- using \(\lceil n / 3\rceil\) simple 11-bit state machines

- Hardware can do the slightly more involved "shift and add" in parallel
- With the machine that is computing \(U_{x}{ }^{2}-2\)
- Hardware can compute Un+1 in linear time!

\section*{11 bits of State in Each Machine}
- Each state machine as 11 bits of state:
- c, x0, y0, x1, y1, x, y, z0, z1, z2
- All binary bits except for c which is a 2-bit binary value
\begin{tabular}{ccc}
\(c\) & \(x\) & \(y\) \\
\(x 0\) & \(y 0\) \\
\(x 1\) & \(y 1\) \\
\(z 0\) & \(z 1\) & \(z 2\)
\end{tabular}
- Oth state machine is special:
- \(3,0,0,0,0, u(t), v(t), 0,0, q(t)\)
- The input bits are feed into \(x —>u(t)\),
- c is always 3, the other bits are always 0
- 1st state machine's \(z 0\) holds the answers at time \(t \geq 1\) :
- That z0 bit, at time \(t+1\) holds bit \(t\) of the answer
- answer bit of: \(a=u * v+q\)
\begin{tabular}{|ccc|}
\hline\(c\) & \(x\) & \(y\) \\
\(x 0\) & \(y 0\) \\
\(x 1\) & \(y 1\) \\
\(z 0\) & \(z 1\) & \(z 2\) \\
\hline
\end{tabular}

\section*{Build an Array of State Machines}
- Assume a linear array of state machines S[0], S[1], S[2], ...
- If \(u, v, q\) are \(n\)-bits you need \(S[0]\) thru \(S[i n t(n / 3)+1]\)
- Initialize all state machine bits except \(\mathrm{S}[0]\) are set to 0
- On each clock all state machines except the 0th:
- Receive 1 bit from the right, 3 bits from the left, and copy over 2 bits from the left

- At clock t , feed in bit t of the input ( \(\mathrm{u}, \mathrm{v}, \mathrm{q}\) ) into the Oth state machine's \(\mathrm{x}, \mathrm{y}, \mathrm{z} 2\)
- When after the last input bit is feed, feed 0 bits
- Bit \(t\) of the answer is found in zO of the 1 st state machine at clock \(\mathrm{t}+1\)

\section*{Simple State Machine Rules These apply to all except left most machine}
- On each clock, state machines compute (z2, z1, z0):
- Obtain z0 from right neighbor (call it z0Rr)
- Obtain \(x, y, z 2\) from left neighbor (call them \(x L, y L, z 2 L\) )
- If \(c==0,(z 2, z 1, z 0)=z 0 R+z 1+z 2 L+(x L \& y L)\)
- If \(c==1,(z 2, z 1, z 0)=z 0 R+z 1+z 2 L+(x 0 \& y L)+(x L \& y 0)\)

- If \(c==2,(z 2, z 1, z 0)=z 0 R+z 1+z 2 L+(x 0 \& y L)+(x L \& y 0)+(x 1 \& y 1)\)
- If c == 3, (z2,z1,z0) = z0R + z1 + z2L + (x0 \& yL) + (xL \& y0) + (x1 \& y) + (x \& y1)
- \& means logical AND and + means add bits together into the 3 bit value ( \(z 2, z 1, z 0\) )
- On each clock, state machines copy from the left depending on c:
- If \(c==0\), then copy \(x 0, y 0\) from left neighbor into \(x 0, y 0\)
- If \(c==1\), then copy \(x 1, y 1\) from left neighbor into \(x 1, y 1\)
- If \(c>1\), then copy \(x, y\) from left neighbor into \(x, y\)
- On each clock, state machine increment c until it reaches 3:
- c = minimum of (c+1,3)

\subsection*{27.6 Million State Machine Array @ 100 GHz}
- Multiply two 82.8 million bit numbers \& add a 82.8 million bit digit number
- In 0.00166 seconds!
- For Lucas-Lehmer or Riesel test:
- Compute u*u + (-2)
- Make \(u(t)=v(t)\) for all clocks
- Add in the 2's compliment of -2
- A simple front-end circuit can perform the "shift \& add" for the mod
- Current record (as of 2019 Apr 16) is a 82589933 digit prime took 12 days


Image Credit: Flickr user Quasimondo Creative Commons License
- Used GIMPS code from http://www.mersenne.org
- PC with an Intel i5-6600 CPU
- At 100 GHz , this machine could Riesel test a record sized prime in 37.9 hours!
- More than 7.6 times faster per test!
- It is certainly possible to build an ASIC with an even faster internal clock
- Method increases linearly \(O(n)\) as the exponent grows
- \(O(n)\) is MUCH better than \(O(n \ln n)\), so for larger tests, this method will eventually become even faster than FFTs in software!
- Of course, you would need multiple units to be competitive with GIMPS

\section*{2127-1: Final Words and Some Encouragement}
- Results (and records) goes to the first to calculate CORRECTLY ...
- ... not necessarily to the fastest tester
- A slow correct answer in infinitely better than a fast wrong answer!
- Compute smarter
- You do NOT need to have the fastest machine to be the first to prove primality
- My 8 world records related to prime numbers did NOT use the fastest machine
- Pre-mature optimization is the bane of a correctly running program
- Write your comments first
- Code something that works, updating comments as needed
- Start that code running

- Then incrementally improve the comments, improve the code \& retest

\section*{Test, test and TEST!}

\section*{- Don't trust the CPU / ALU}
- Put in checksums to sanity check square
- Put in checksums to sanity check mod
- 2001 Intel Celeron CPU had a Mean Time Between Errors (MTBE) of only 37 weeks!

Image Credit: Flickr user: flanker27 Creative Commons License

Photo \# NH 96566-KN First Computer "Bug", 1945
- Uniquely mark pages in memory
- Check for bad page fetches
- Don't trust the system
- Checkpoint in the middle of calculations
- Restart program at last checkpoint
- Backup! Test your backups!
- Checksum code and data tables!
- Confirm all primality tests
- After a number is tested, recheck the result!

- Compare final \(U_{X}\) values
- Test on different hardware
- Better still, use different code to confirm test results

\section*{Most CPU cycles are NOT spent primality testing}
- Expect to spend \(1 / 3\) or more of CPU time eliminating test candidates
- Expect to primality test each remaining test candidate at least twice
- Expect to spend \(1 / 4\) or more of CPU time in error checking
- Typically only \(25 \%\) of CPU cycles will test a new prime candidate
- You must verify (recheck your test) and have someone else independently verify (3rd test)
- So plan on the time to test the number at least 3 times!
- While nothing is \(100 \%\) error free:
- Q: What is "mathematical truth"? A: The pragmatic answer:
- Mathematical truth is something that the mathematical community has studied (peer reviewed) and has been shown to be true

\section*{Find a new largest known prime (> 282589933-1)}
- Pick some n a bit larger than 82589933 , say \(\mathrm{n}=82837504\)
- If n as mostly 0 bits, the sieve (to eliminate potential candidates) goes faster
- \(\mathrm{n}=100111100000000000000000000\) in binary
- Start with some practical range for h, say 165675008 < h < 1325400064
- 2*82837504 < h < 16*82837504
- Look for small factors by sieving, tossing out those with factors that are not prime
- Eliminate more than 98.5\% of the candidates
- before the sieve starts to take more time to eliminate a candidate than a prime test takes to run
- For each \(\mathrm{h} * 2^{82837504-1}\) remaining, perform the Riesel test
\(-U_{2}=V(h)\) and \(U_{x+1} \equiv U_{x}{ }^{2}-2 \bmod h^{*} 2^{82837504}-1\) until \(U_{82837504}\) is computed
- Pad \(u_{x}\) with leading 0's (at least p bits, more if required by Transform size)
- Transform
- Square each point
- Inverse Transform
- Round to integers
- Propagate carries
- Subtract 2
- Mod \(\mathrm{h}^{*} 2^{\mathrm{n}}\)-1 using a slightly more involved "shift and add" method
- If \(U_{p} \equiv 0\) then \(h^{*} 2^{82837504-1 ~ i s ~ p r i m e, ~ o t h e r w i s e ~ i t ~ i s ~ n o t ~ p r i m e ~}\)


\section*{Riesel tests to find a new largest known prime}
- Odds of h*282837504-1 prime ...

Digits in Largest Known Prime by Year (computer age)
- where \(165675008<\mathrm{h}<1325400064\)
- where 2*82837504 < h < 16*82837504
- is about 1 in \(2^{*} \ln \left(h^{*} 2^{82837504-1}\right)\)
- About 1 in \(2^{*}\left(\ln (h)+\left(82837504^{*} \ln (2)\right)\right)\)
- 1 in 107569027 for h near 114837203
- 1 in 107569032 for h near 114837207

- Assume sieving eliminates \(>98.5 \%\) of the candidates
- Expect to perform about 1613535 Riesel tests of \(h^{*} 2^{82837504-1}\)

\section*{Finding a new largest known prime}
- Could one of us, or a team among us find a new largest known prime? - Yes!
- Focus on correctness of coding
- Write code that runs correctly the first time
- You don't have time to rerun!


Image Credit: Flickr user: My Buffo Creative Commons License
- Focus on error correction and detection
- Don't blindly trust hardware, firmware, operating system, system, drivers, compilers, etc.
- Consider developing a tool to test newly manufactured hardware
- Consider developing a tool that uses otherwise idle cycles
- Compute smarter
- Hardware people: Consider building a fast multiply/add circuit
- You do NOT need to use the fastest computer to gain a new world record!
- Efficient networking between compute nodes will be key!

\section*{Don't Become Discouraged}
- As Dr. Lehmer was fond of saying:

\section*{"Happiness is just around the corner"}
- Don't get discouraged
- You are searching on a many-sided polygon - you just have to find the right corner
- Work in a small team
- Make use of complimentary strengths
- Write your own code where reasonable
- Have different team members check each other's code
- When you use outside code


Image Credit: Flickr user b3ni Creative Commons License
- Always start with the source
- Study their code, check for correctness, learn that code so well that you could write it yourself
- You might end up re-writing it once you really understand what their code does

\section*{And Above All ...}
- Could someone in this room find a new largest known prime?
- Yes!
- You CAN find a new largest known prime!
- Never let someone tell you, you can't!

\section*{2521-1: Resources}
- The Prime Pages:
- https://primes.utm.edu/
- https://primes.utm.edu/notes/by_year.html\#3
- https://primes.utm.edu/prove/index.html
- Amdahl 6 method for implementing the Riesel test:
- http://www.isthe.com/chongo/src/calc/lucas-calc
- http://www.isthe.com/chongo/tech/comp/calc/index.html
- Transform resources and multiplication:
- https://tonjanee.home.xs4all.nl/SSAdescription.pdf

- http://www.flintlib.org
- http://www.fftw.org/
- https://en.wikipedia.org/wiki/Discrete_Fourier_transform\#Polynomial_multiplication
- http://www.apfloat.org/ntt.html
- https://gmplib.org
- https://arxiv.org/abs/0801.1416
- https://cr.yp.to/f2mult/mateer-thesis.pdf
- https://www.ams.org/journals/mcom/1994-62-205/S0025-5718-1994-1185244-1/ S0025-5718-1994-1185244-1.pdf
- https://www.daemonology.net/papers/fft.pdf

\section*{2521-1: Resources II}
- Riesel primality test code:
- https://github.com/arcetri/gmprime
- https://github.com/arcetri/goprime
- http://jpenne.free.fr/index2.html
- Verified primes of the form \(\mathrm{h}^{*} 2^{\mathrm{n}}-1\)
- https://github.com/arcetri/verified-prime
- GIMPS:


Image Credit:
Flickr user: Lee Jordan
Creative Commons License
- https://www.mersenne.org
- https://www.mersenne.org/download/
- On English names of large numbers:
- http://www.isthe.com/chongo/tech/math/number/number.html
- http://www.isthe.com/chongo/tech/math/number/howhigh.html
- Mersenne primes and the largest known Mersenne prime:
- http://www.isthe.com/chongo/tech/math/prime/mersenne.html
- http://www.isthe.com/chongo/tech/math/prime/mersenne.html\#largest
- Cooperative Computing Award:
- https://www.eff.org/awards/coop
- https://www.eff.org/awards/coop/rules
- Obtain a recent edition of Knuth's:
- The Art of Computer Programming, Volume 2, Semi-Numerical Algorithms: Especially Sections 4.3.1, 4.3.2, 4.3.3

\section*{www.isthe.com/chongo/tech/math/prime/prime-tutorial.pdf Questions for Part 2 \\ 1) Why is it faster to search for a large prime of the form \(\mathrm{h}^{*} 2^{\mathrm{n}}-1\) than \(2^{\mathrm{p}}-1\) ? \\ - Hint: See 69, 70 \\ }
- 2) Assume \(M(92798969)\) is proven prime, what would a good choice of \(n\) (exponent of 2) to use when searching for a new largest known prime?
- Hint: 92798969 in binary is: 10110000111111111111111001
- Hint: See slides 92, 93, 94
- 3) How many state machines would it take to test \(215802117^{* 277594624-1 ? ~}\)
- Hint: See slides 101, 105
- 4) What types of error checking could help correctly find a new largest known prime?
- Hint: See slides 106, 107
-5) Prove that \(19^{*} 2^{5}-1=607\) is prime using the Riesel Test
- Hint: \(\mathrm{U}(2)=\mathrm{V}(19)=52\)
- \(V(1)=3\) (although \(V(1)=4\) also works)
- Hint: See slides 74, 75, 76, 80, 81

\section*{Bottom of talk.}

\section*{Any Questions?}

\section*{Thank you.}


Landon Noll Touching the South Geographic Pole \(\pm 1 \mathrm{~cm}\) Antarctica Expedition 2013

\section*{Landon Curt Noll prime-tutorial-mail@asthe.com}```

