/* $Id: shs.c,v 13.5 2010/10/12 21:10:17 chongo Exp $ */ /* * shs - old Secure Hash Standard * * @(#) $Revision: 13.5 $ * @(#) $Id: shs.c,v 13.5 2010/10/12 21:10:17 chongo Exp $ * @(#) $Source: /usr/local/src/cmd/hash/RCS/shs.c,v $ * ************************************************************************** * This version implements the old Secure Hash Algorithm specified by * * (FIPS Pub 180). This version is kept for backward compatibility with * * shs version 2.10.1. See the shs utility for the new standard. * ************************************************************************** * * Written 2 September 1992, Peter C. Gutmann. * * This file was Modified/Re-written by Landon Curt Noll. * * This code has been placed in the public domain. Please do not * copyright this code. * * LANDON CURT NOLL DISCLAIMS ALL WARRANTIES WITH REGARD TO * THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MER- * CHANTABILITY AND FITNESS. IN NO EVENT SHALL LANDON CURT * NOLL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF * USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, * NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * * chongo (was here) /\oo/\ * http://www.isthe.com/chongo/index.html * * Share and enjoy! :-) * * See shsdrvr.c for version and modification history. */ #include #include #define SHS_IO #include "shs.h" #include "align.h" #include "endian.h" /* * The SHS f()-functions. The f1 and f3 functions can be optimized * to save one boolean operation each - thanks to Rich Schroeppel, * rcs@cs.arizona.edu for discovering this. * * f1: ((x&y) | (~x&z)) == (z ^ (x&(y^z))) * f3: ((x&y) | (x&z) | (y&z)) == ((x&y) | (z&(x|y))) */ #define f1(x,y,z) (z ^ (x&(y^z))) /* Rounds 0-19 */ #define f2(x,y,z) (x^y^z) /* Rounds 20-39 */ #define f3(x,y,z) ((x&y) | (z&(x|y))) /* Rounds 40-59 */ #define f4(x,y,z) (x^y^z) /* Rounds 60-79 */ /* The SHS Mysterious Constants */ #define K1 0x5A827999L /* Rounds 0-19 */ #define K2 0x6ED9EBA1L /* Rounds 20-39 */ #define K3 0x8F1BBCDCL /* Rounds 40-59 */ #define K4 0xCA62C1D6L /* Rounds 60-79 */ /* SHS initial values */ #define h0init 0x67452301L #define h1init 0xEFCDAB89L #define h2init 0x98BADCFEL #define h3init 0x10325476L #define h4init 0xC3D2E1F0L /* 32-bit rotate left - kludged with shifts */ #define LEFT_ROT(X,n) (((X)<<(n)) | ((X)>>(32-(n)))) /* * The initial expanding function. The hash function is defined over an * 80-word expanded input array W, where the first 16 are copies of the input * data, and the remaining 64 are defined by * * W[i] = W[i-16] ^ W[i-14] ^ W[i-8] ^ W[i-3] * * This implementation generates these values on the fly in a circular * buffer - thanks to Colin Plumb (colin@nyx10.cs.du.edu) for this * optimization. */ #define exor(W,i) (W[i&15] ^= (W[(i-14)&15] ^ W[(i-8)&15] ^ W[(i-3)&15])) /* * The prototype SHS sub-round. The fundamental sub-round is: * * a' = e + LEFT_ROT(a,5) + f(b,c,d) + k + data; * b' = a; * c' = LEFT_ROT(b,30); * d' = c; * e' = d; * * but this is implemented by unrolling the loop 5 times and renaming the * variables ( e, a, b, c, d ) = ( a', b', c', d', e' ) each iteration. * This code is then replicated 20 times for each of the 4 functions, using * the next 20 values from the W[] array each time. */ #define subRound(a, b, c, d, e, f, k, data) \ (e += LEFT_ROT(a,5) + f(b,c,d) + k + data, b = LEFT_ROT(b,30)) /* * shsInit - initialize the SHS state */ void shsInit(SHS_INFO *dig) { /* Set the h-vars to their initial values */ dig->digest[0] = h0init; dig->digest[1] = h1init; dig->digest[2] = h2init; dig->digest[3] = h3init; dig->digest[4] = h4init; /* Initialise bit count */ dig->octets = 0; dig->datalen = 0; } /* * shsTransform - perform the SHS transformatio * * Note that this code, like MD5, seems to break some optimizing compilers. * It may be necessary to split it into sections, eg based on the four * subrounds. One may also want to roll each subround into a loop. */ void shsTransform(ULONG *digest, ULONG *W) { ULONG A, B, C, D, E; /* Local vars */ #if BYTE_ORDER == LITTLE_ENDIAN || defined(DETAILED_DEBUG) unsigned int i; #endif /* BYTE_ORDER == LITTLE_ENDIAN || DETAILED_DEBUG */ #if defined(DETAILED_DEBUG) if (debug) { ULONG dig; /* digest in Big Endian order */ unsigned char *p; unsigned int j; /* print the input digest */ fprintf(stderr, "DEBUG: input digest: "); for (i=0; i < SHS_DIGESTWORDS; ++i) { #if BYTE_ORDER == LITTLE_ENDIAN dig = ((digest[i]<<16) | (digest[i]>>16)); dig = (((digest[i] & 0xff00ff00UL) >> 8) | ((digest[i] & 0x00ff00ffUL) >> 8)); #else /* BYTE_ORDER == LITTLE_ENDIAN */ dig = digest[i]; #endif /* BYTE_ORDER == LITTLE_ENDIAN */ for (j=0, p=(unsigned char *)&dig; j < sizeof(ULONG); ++j, ++p) { fprintf(stderr, "%02x ", *p); } } fputc('\n', stderr); /* print the input buffer */ fprintf(stderr, "DEBUG: input buffer: "); for (p = (unsigned char *)W, i=0; i < SHS_CHUNKSIZE; ++i, ++p) { fprintf(stderr, "%02x ", *p); } fputc('\n', stderr); } #endif /* DETAILED_DEBUG */ /* Set up first buffer and local data buffer */ A = digest[0]; B = digest[1]; C = digest[2]; D = digest[3]; E = digest[4]; /* * The heavy mangling below was encoded for a Big Endian machine. * We must byte swap the data on a Little Endian machine unfortunately. */ #if BYTE_ORDER == LITTLE_ENDIAN for (i=0; i < SHS_CHUNKWORDS; ++i) { W[i] = ((W[i]<<16) | (W[i]>>16)); W[i] = (((W[i] & 0xff00ff00UL) >> 8) | ((W[i] & 0x00ff00ffUL) << 8)); } #endif /* BYTE_ORDER == LITTLE_ENDIAN */ /* Heavy mangling, in 4 sub-rounds of 20 interations each. */ subRound(A, B, C, D, E, f1, K1, W[ 0]); subRound(E, A, B, C, D, f1, K1, W[ 1]); subRound(D, E, A, B, C, f1, K1, W[ 2]); subRound(C, D, E, A, B, f1, K1, W[ 3]); subRound(B, C, D, E, A, f1, K1, W[ 4]); subRound(A, B, C, D, E, f1, K1, W[ 5]); subRound(E, A, B, C, D, f1, K1, W[ 6]); subRound(D, E, A, B, C, f1, K1, W[ 7]); subRound(C, D, E, A, B, f1, K1, W[ 8]); subRound(B, C, D, E, A, f1, K1, W[ 9]); subRound(A, B, C, D, E, f1, K1, W[10]); subRound(E, A, B, C, D, f1, K1, W[11]); subRound(D, E, A, B, C, f1, K1, W[12]); subRound(C, D, E, A, B, f1, K1, W[13]); subRound(B, C, D, E, A, f1, K1, W[14]); subRound(A, B, C, D, E, f1, K1, W[15]); subRound(E, A, B, C, D, f1, K1, exor(W,16)); subRound(D, E, A, B, C, f1, K1, exor(W,17)); subRound(C, D, E, A, B, f1, K1, exor(W,18)); subRound(B, C, D, E, A, f1, K1, exor(W,19)); subRound(A, B, C, D, E, f2, K2, exor(W,20)); subRound(E, A, B, C, D, f2, K2, exor(W,21)); subRound(D, E, A, B, C, f2, K2, exor(W,22)); subRound(C, D, E, A, B, f2, K2, exor(W,23)); subRound(B, C, D, E, A, f2, K2, exor(W,24)); subRound(A, B, C, D, E, f2, K2, exor(W,25)); subRound(E, A, B, C, D, f2, K2, exor(W,26)); subRound(D, E, A, B, C, f2, K2, exor(W,27)); subRound(C, D, E, A, B, f2, K2, exor(W,28)); subRound(B, C, D, E, A, f2, K2, exor(W,29)); subRound(A, B, C, D, E, f2, K2, exor(W,30)); subRound(E, A, B, C, D, f2, K2, exor(W,31)); subRound(D, E, A, B, C, f2, K2, exor(W,32)); subRound(C, D, E, A, B, f2, K2, exor(W,33)); subRound(B, C, D, E, A, f2, K2, exor(W,34)); subRound(A, B, C, D, E, f2, K2, exor(W,35)); subRound(E, A, B, C, D, f2, K2, exor(W,36)); subRound(D, E, A, B, C, f2, K2, exor(W,37)); subRound(C, D, E, A, B, f2, K2, exor(W,38)); subRound(B, C, D, E, A, f2, K2, exor(W,39)); subRound(A, B, C, D, E, f3, K3, exor(W,40)); subRound(E, A, B, C, D, f3, K3, exor(W,41)); subRound(D, E, A, B, C, f3, K3, exor(W,42)); subRound(C, D, E, A, B, f3, K3, exor(W,43)); subRound(B, C, D, E, A, f3, K3, exor(W,44)); subRound(A, B, C, D, E, f3, K3, exor(W,45)); subRound(E, A, B, C, D, f3, K3, exor(W,46)); subRound(D, E, A, B, C, f3, K3, exor(W,47)); subRound(C, D, E, A, B, f3, K3, exor(W,48)); subRound(B, C, D, E, A, f3, K3, exor(W,49)); subRound(A, B, C, D, E, f3, K3, exor(W,50)); subRound(E, A, B, C, D, f3, K3, exor(W,51)); subRound(D, E, A, B, C, f3, K3, exor(W,52)); subRound(C, D, E, A, B, f3, K3, exor(W,53)); subRound(B, C, D, E, A, f3, K3, exor(W,54)); subRound(A, B, C, D, E, f3, K3, exor(W,55)); subRound(E, A, B, C, D, f3, K3, exor(W,56)); subRound(D, E, A, B, C, f3, K3, exor(W,57)); subRound(C, D, E, A, B, f3, K3, exor(W,58)); subRound(B, C, D, E, A, f3, K3, exor(W,59)); subRound(A, B, C, D, E, f4, K4, exor(W,60)); subRound(E, A, B, C, D, f4, K4, exor(W,61)); subRound(D, E, A, B, C, f4, K4, exor(W,62)); subRound(C, D, E, A, B, f4, K4, exor(W,63)); subRound(B, C, D, E, A, f4, K4, exor(W,64)); subRound(A, B, C, D, E, f4, K4, exor(W,65)); subRound(E, A, B, C, D, f4, K4, exor(W,66)); subRound(D, E, A, B, C, f4, K4, exor(W,67)); subRound(C, D, E, A, B, f4, K4, exor(W,68)); subRound(B, C, D, E, A, f4, K4, exor(W,69)); subRound(A, B, C, D, E, f4, K4, exor(W,70)); subRound(E, A, B, C, D, f4, K4, exor(W,71)); subRound(D, E, A, B, C, f4, K4, exor(W,72)); subRound(C, D, E, A, B, f4, K4, exor(W,73)); subRound(B, C, D, E, A, f4, K4, exor(W,74)); subRound(A, B, C, D, E, f4, K4, exor(W,75)); subRound(E, A, B, C, D, f4, K4, exor(W,76)); subRound(D, E, A, B, C, f4, K4, exor(W,77)); subRound(C, D, E, A, B, f4, K4, exor(W,78)); subRound(B, C, D, E, A, f4, K4, exor(W,79)); /* Build message digest */ digest[0] += A; digest[1] += B; digest[2] += C; digest[3] += D; digest[4] += E; #if defined(DETAILED_DEBUG) if (debug) { int i; unsigned char *p; /* print the final digest */ fprintf(stderr, "DEBUG: final digest: "); for (p = (unsigned char *)digest, i=0; i < SHS_DIGESTSIZE; ++i, ++p) { fprintf(stderr, "%02x ", *p); } fputc('\n', stderr); } #endif /* DETAILED_DEBUG */ } /* * shsUpdate - update SHS with arbitrary length data * * This code does not assume that the buffer size is a multiple of * SHS_CHUNKSIZE bytes long. This code handles partial chunk between * calls to shsUpdate(). */ void shsUpdate(SHS_INFO *dig, BYTE *buffer, ULONG count) { ULONG datalen = dig->datalen; /* * Catch the case of a non-empty data buffer */ if (datalen > 0) { /* determine the size we need to copy to fill the buffer */ ULONG len_to_fill = SHS_CHUNKSIZE - datalen; /* case: new data will not fill the buffer */ if (len_to_fill > count) { memcpy(((BYTE *)dig->data)+datalen, buffer, count); dig->datalen = datalen+count; return; /* case: buffer will be filled */ } else { memcpy(((BYTE *)dig->data)+datalen, buffer, len_to_fill); shsTransform(dig->digest, dig->data); buffer += len_to_fill; count -= len_to_fill; dig->octets += SHS_CHUNKSIZE; dig->datalen = 0; } } /* * Process data in SHS_CHUNKSIZE chunks */ if (count >= SHS_CHUNKSIZE) { shsfullUpdate(dig, buffer, (count & ~SHS_CHUNKMASK)); buffer += (count & ~SHS_CHUNKMASK); count &= SHS_CHUNKMASK; } /* * Handle any remaining bytes of data. * This should only happen once on the final lot of data */ if (count > 0) { memcpy((char *)dig->data, (char *)buffer, count); } dig->datalen = count; } /* * shsfullUpdate - update SHS with chunk multiple length data * * This function assumes that count is a multiple of SHS_CHUNKSIZE and that * no partial chunk is left over from a previous call. */ void shsfullUpdate(SHS_INFO *dig, BYTE *buffer, ULONG count) { #if defined(MUST_ALIGN) ULONG in[SHS_CHUNKWORDS]; /* aligned buffer */ #endif /* MUST_ALIGN */ /* * Process data in SHS_CHUNKSIZE chunks */ while (count >= SHS_CHUNKSIZE) { #if defined(MUST_ALIGN) if ((long)buffer & (sizeof(ULONG)-1)) { memcpy((char *)in, (char *)buffer, SHS_CHUNKSIZE); shsTransform(dig->digest, in); } else { shsTransform(dig->digest, buffer); } #else /* MUST_ALIGN */ shsTransform(dig->digest, (ULONG *)buffer); #endif /* MUST_ALIGN */ buffer += SHS_CHUNKSIZE; count -= SHS_CHUNKSIZE; dig->octets += SHS_CHUNKSIZE; } } /* * shsFinal - perform final SHS transforms * * At this point we have less than a full chunk of data remaining * (and possibly no data) in the shs state data buffer. * * First we append a final 0x80 byte. * * Next if we have more than 56 bytes, we will zero fill the remainder * of the chunk, transform and then zero fill the first 56 bytes. * If we have 56 or fewer bytes, we will zero fill out to the 56th * chunk byte. Regardless, we wind up with 56 bytes data. * * Finally we append the 64 bit length on to the 56 bytes of data * remaining. This final chunk is transformed. */ void shsFinal(SHS_INFO *dig) { int count = dig->datalen; /* count of actual data in buffer */ ULLONG bits; /* number of bits of data processed */ /* * Set the first char of padding to 0x80. * This is safe since there is always at least one byte free */ dig->octets += count; /* add in any remaining data in buffer */ ((BYTE *)dig->data)[count++] = 0x80; /* add in guard octet */ /* Pad out to 56 mod SHS_CHUNKSIZE */ if (count > 56) { /* Two lots of padding: Pad the first chunk to SHS_CHUNKSIZE bytes */ memset((BYTE *)dig->data + count, 0, SHS_CHUNKSIZE - count); shsTransform(dig->digest, dig->data); /* Now fill the next chunk with 56 bytes */ memset(dig->data, 0, 56); } else { /* Pad chunk to 56 bytes */ memset((BYTE *)dig->data + count, 0, 56 - count); } /* * Append length in bits and transform * * We assume that bit count is a multiple of 8 because we have * only processed full bytes. */ bits = (dig->octets << 3); #if BYTE_ORDER == LITTLE_ENDIAN bits = ((bits << 32) | (bits >> 32)); bits = ((bits & 0xffff0000ffff0000ULL) >> 16) | ((bits & 0x0000ffff0000ffffULL) << 16); bits = ((bits & 0xff00ff00ff00ff00ULL) >> 8) | ((bits & 0x00ff00ff00ff00ffULL) << 8); #endif /* BYTE_ORDER == LITTLE_ENDIAN */ memcpy(&(dig->data[SHS_HIGH]), &bits, sizeof(ULLONG)); shsTransform(dig->digest, dig->data); dig->datalen = 0; }